首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cobalamin-independent methionine synthase (MetE) from Escherichia coli catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine to form tetrahydrofolate and methionine. It contains 1 equiv of zinc that is essential for its catalytic activity. Extended X-ray absorption fine structure analysis of the zinc-binding site has suggested tetrahedral coordination with two sulfur (cysteine) and one nitrogen or oxygen ligands provided by the enzyme and an exchangeable oxygen or nitrogen ligand that is replaced by the homocysteine thiol group in the enzyme-substrate complex [González, J. C., Peariso, K., Penner-Hahn, J. E., and Matthews, R. G. (1996) Biochemistry 35, 12228-34]. Sequence alignment of MetE homologues shows that His641, Cys643, and Cys726 are the only conserved residues. We report here the construction, expression, and purification of the His641Gln, Cys643Ser, and Cys726Ser mutants of MetE. Each mutant displays significantly impaired activity and contains less than 1 equiv of zinc upon purification. Furthermore, each mutant binds zinc with lower binding affinity (K(a) approximately 10(14) M(-)(1)) compared to the wild-type enzyme (K(a) > 10(16) M(-)(1)). All the MetE mutants are able to bind homocysteine. X-ray absorption spectroscopy analysis of the zinc-binding sites in the mutants indicates that the four-coordinate zinc site is preserved but that the ligand sets are changed. Our results demonstrate that Cys643 and Cys726 are two of the zinc ligands in MetE from E. coli and suggest that His641 is a third endogenous ligand. The effects of the mutations on the specific activities of the mutant proteins suggest that zinc and homocysteine binding alone are not sufficient for activity; the chemical nature of the ligands is also a determining factor for catalytic activity in agreement with model studies of the alkylation of zinc-thiolate complexes.  相似文献   

2.
Cobalamin-independent methionine synthase (MetE) catalyzes the direct transfer of a methyl group from methyltetrahydrofolate to l-homocysteine to form methionine. Previous studies have shown that the MetE active site coordinates a zinc atom, which is thought to act as a Lewis acid and plays a role in the activation of thiol. Extended X-ray absorption fine structure studies and mutagenesis experiments identified the zinc-binding site in MetE from Escherichia coli. Further structural investigations of MetE from Thermotoga maritima lead to the proposition of two models: “induced fit” and “dynamic equilibrium”, to account for the catalytic mechanisms of MetE. Here, we present crystal structures of oxidized and zinc-replete MetE from Streptococcus mutans at the physiological pH. The structures reveal that zinc is mobile in the active center and has the possibility to invert even in the absence of homocysteine. These structures provide evidence for the dynamic equilibrium model.  相似文献   

3.
Taurog RE  Matthews RG 《Biochemistry》2006,45(16):5092-5102
Cobalamin-independent methionine synthase (MetE) catalyzes the final step of de novo methionine synthesis using the triglutamate derivative of methyltetrahydrofolate (CH(3)-H(4)PteGlu(3)) as methyl donor and homocysteine (Hcy) as methyl acceptor. This reaction is challenging because at physiological pH the Hcy thiol is not a strong nucleophile and CH(3)-H(4)PteGlu(3) provides a very poor leaving group. Our laboratory has previously established that Hcy is ligated to a tightly bound zinc ion in the MetE active site. This interaction activates Hcy by lowering its pK(a), such that the thiolate is stabilized at neutral pH. The remaining chemical challenge is the activation of CH(3)-H(4)PteGlu(3). Protonation of N5 of CH(3)-H(4)PteGlu(3) would produce a better leaving group, but occurs with a pK(a) of 5 in solution. We have taken advantage of the sensitivity of the CH(3)-H(4)PteGlu(3) absorption spectrum to probe its protonation state when bound to MetE. Comparison of free and MetE-bound CH(3)-H(4)PteGlu(3) absorbance spectra indicated that the N5 is not protonated in the binary complex. Rapid reaction studies have revealed changes in CH(3)-H(4)PteGlu(3) absorbance that are consistent with protonation at N5. These absorbance changes show saturable dependence on both Hcy and CH(3)-H(4)PteGlu(3), indicating that protonation of CH(3)-H(4)PteGlu(3) occurs upon formation of the ternary complex and prior to methyl transfer. Furthermore, the tetrahydrofolate (H(4)PteGlu(3)) product appears to remain bound to MetE, and in the presence of excess Hcy a MetE.H(4)PteGlu(3).Hcy mixed ternary complex forms, in which H(4)PteGlu(3) is protonated.  相似文献   

4.
5.
Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two (βα)8 barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys)3Zn site in the related enzymes, MetH and betaine–homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E·Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.  相似文献   

6.
Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of the N5-methyl group of methyltetrahydrofolate (CH(3)-H(4)folate) to the sulfur of homocysteine (Hcy) to form methionine and tetrahydrofolate (H(4)folate) as products. This reaction is thought to involve a direct methyl transfer from one substrate to the other, requiring the two substrates to interact in a ternary complex. The crystal structure of a MetE.CH(3)-H(4)folate binary complex shows that the methyl group is pointing away from the Hcy binding site and is quite distant from the position where the sulfur of Hcy would be, raising the possibility that this binary complex is nonproductive. The CH(3)-H(4)folate must either rearrange or dissociate before methyl transfer can occur. Therefore, determining the order of substrate binding is of interest. We have used kinetic and equilibrium measurements in addition to isotope trapping experiments to elucidate the kinetic pathway of substrate binding in MetE. These studies demonstrate that both substrate binary complexes are chemically and kinetically competent for methyl transfer and suggest that the conformation observed in the crystal structure is indeed on-pathway. Additionally, the substrates are shown to bind synergistically, with each substrate binding 30-fold more tightly in the presence of the other. Methyl transfer has been determined to be slow compared to ternary complex formation and dissociation. Simulations indicate that nearly all of the enzyme is present as the ternary complex under physiological conditions.  相似文献   

7.
In this study, we investigated methionine synthase from Candida albicans (CaMET 6p) and Saccharomyces cerevisiae (ScMET 6p). We describe the cloning of CaMet 6 and ScMet 6, and the expression of both the enzymes in S. cerevisiae. CaMET 6p is able to complement the disruption of met 6 in S. cerevisiae. Following the purification of ScMET 6p and CaMET 6p, kinetic assays were performed to determine substrate specificity. The Michaelis constants for ScMET 6p with CH(3)-H(4)PteGlu(2), CH(3)-H(4)PteGlu(3), CH(3)-H(4)PteGlu(4), and l-homocysteine are 108, 84, 95, and 13 microM, respectively. The Michaelis constants for CaMET 6p with CH(3)-H(4)PteGlu(2), CH(3)-H(4)PteGlu(3), CH(3)-H(4)PteGlu(4), and l-homocysteine are 113, 129, 120, and 14 microM, respectively. Neither enzyme showed activity with CH(3)-H(4)PteGlu(1) as a substrate. We conclude that ScMET 6p and CaMET 6p require a minimum of two glutamates on the methyltetrahydrofolate substrate, similar to the bacterial metE homologs. The cloning, purification, and characterization of these enzymes lay the groundwork for inhibitor-design studies on the cobalamin-independent fungal methionine synthases.  相似文献   

8.
In Escherichia coli, two enzymes catalyze the synthesis of methionine from homocysteine using methyltetrahydrofolate as the donor of the required methyl group: cobalamin-dependent and cobalamin-independent methionine synthases. Comparison of the mechanisms of these two enzymes offers the opportunity to examine two different solutions to the same chemical problem. We initiated the research described here to determine whether the two enzymes were evolutionarily related by comparing the deduced amino acid sequences of the two proteins. We have determined the nucleotide sequence for the metE gene, encoding the cobalamin-independent methionine synthase. Our results reveal an absence of similarity between the deduced amino acid sequences of the cobalamin-dependent and cobalamin-independent proteins and suggest that the two have arisen by convergent evolution. We have developed a rapid one-step purification of the recombinant cobalamin-independent methionine synthase (MetE) that yields homogeneous protein in high yield for mechanistic and structural studies. In the course of these studies, we identified a highly reactive thiol in MetE that is alkylated by chloromethyl ketones and by iodoacetamide. We demonstrated that alkylation of this residue, shown to be cysteine 726, results in complete loss of activity. While we are unable to deduce the role of cysteine 726 in catalysis at this time, the identification of this reactive residue suggests the possibility that this thiol functions as an intermediate methyl acceptor in catalysis, analogous to the role of cobalamin in the reaction catalyzed by the cobalamin-dependent enzyme.  相似文献   

9.
Cobalamin-independent methionine synthase (MetE) catalyzes the synthesis of methionine by a direct transfer of the methyl group of N5-methyltetrahydrofolate (CH3-H2PteGlun) to the sulfur atom of homocysteine (Hcy). We report here the first crystal structure of this metalloenzyme under different forms, free or complexed with the Hcy and folate substrates. The Arabidopsis thaliana MetE (AtMetE) crystals reveal a monomeric structure built by two (betaalpha)8 barrels making a deep groove at their interface. The active site is located at the surface of the C-terminal domain, facing the large interdomain cleft. Inside the active site, His647, Cys649, and Cys733 are involved in zinc coordination, whereas Asp605, Ile437, and Ser439 interact with Hcy. Opposite the zinc/Hcy binding site, a cationic loop (residues 507-529) belonging to the C-terminal domain anchors the first glutamyl residue of CH3-H4PteGlu5. The pterin moiety of CH3-H4PteGlu5 is stacked with Trp567, enabling the N5-methyl group to protrude in the direction of the zinc atom. These data suggest a structural role of the N-terminal domain of AtMetE in the stabilization of loop 507-529 and in the interaction with the poly-glutamate chain of CH3-H4PteGlun. Comparison of AtMetE structures reveals that the addition of Hcy does not lead to a direct coordination of the sulfur atom with zinc but to a reorganization of the zinc binding site with a stronger coordination to Cys649, Cys733, and a water molecule.  相似文献   

10.
Acetate-mediated growth inhibition of Escherichia coli has been found to be a consequence of the accumulation of homocysteine, the substrate of the cobalamin-independent methionine synthase (MetE) that catalyzes the final step of methionine biosynthesis. To improve the acetate resistance of E. coli, we randomly mutated the MetE enzyme and isolated a mutant enzyme, designated MetE-214 (V39A, R46C, T106I, and K713E), that conferred accelerated growth in the E. coli K-12 WE strain in the presence of acetate. Additionally, replacement of cysteine 645, which is a unique site of oxidation in the MetE protein, with alanine improved acetate tolerance, and introduction of the C645A mutation into the MetE-214 mutant enzyme resulted in the highest growth rate in acetate-treated E. coli cells among three mutant MetE proteins. E. coli WE strains harboring acetate-tolerant MetE mutants were less inhibited by homocysteine in l-isoleucine-enriched medium. Furthermore, the acetate-tolerant MetE mutants stimulated the growth of the host strain at elevated temperatures (44 and 45°C). Unexpectedly, the mutant MetE enzymes displayed a reduced melting temperature (Tm) but an enhanced in vivo stability. Thus, we demonstrate improved E. coli growth in the presence of acetate or at elevated temperatures solely due to mutations in the MetE enzyme. Furthermore, when an E. coli WE strain carrying the MetE mutant was combined with a previously found MetA (homoserine o-succinyltransferase) mutant enzyme, the MetA/MetE strain was found to grow at 45°C, a nonpermissive growth temperature for E. coli in defined medium, with a similar growth rate as if it were supplemented by l-methionine.  相似文献   

11.
Oxidative stress is a disbalanse between ROS generation and detoxification resulting in their increased level. It is commonly recognized that E. coli is the most suitable model system for the investigation of cell response to oxidative stress. E. coli is an enterobacteria which has specialized regulatory system for defence against ROS. Catalase is the key enzyme of the adaptive response. E. coli produces two forms of catalase--bifunctional catalase-peroxidase HPI and monofuctional catalase HPII. They are different in structure, kinetics, physico-chemical properties etc. HPI and HPII forms are members of various regulons which are regulated by different environmental factors. In this review we have summarized the present knowledge on two catalase forms and control of regulons responsible for antioxidant defence in E. coli.  相似文献   

12.
Oxidative stress is strongly implicated in a number of diseases, such as rheumatoid arthritis, inflammatory bowel disorders, and atherosclerosis, and its emerging as one of the most important causative agents of mutagenesis, tumorigenesis, and aging. Recent progress on the genetics and molecular biology of the cellular responses to oxidative stress, primarily in Escherichia coli and Salmonella typhimurium, is summarized. Bacteria respond to oxidative stress by invoking two distinct stress responses, the peroxide stimulon and the superoxide stimulon, depending on whether the stress is mediated by peroxides or the superoxide anion. The two stimulons each contain a set of more than 30 genes. The expression of a subset of genes in each stimulon is under the control of a positive regulatory element; these genes constitute the OxyR and SoxRS regulons. The schemes of regulation of the two regulons by their respective regulators are reviewed in detail, and the overlaps of these regulons with other stress responses such as the heat shock and SOS responses are discussed. The products of Oxy-R- and SoxRS-regulated genes, such as catalases and superoxide dismutases, are involved in the prevention of oxidative damage, whereas others, such as endonuclease IV, play a role in the repair of oxidative damage. The potential roles of these and other gene products in the defense against oxidative damage in DNA, proteins, and membranes are discussed in detail. A brief discussion of the similarities and differences between oxidative stress responses in bacteria and eukaryotic organisms concludes this review.  相似文献   

13.
14.
Sensitivity to various oxidants was determined for Escherichia coli strains JTG10 and 821 deficient in biosynthesis of glutathione (gsh-) and their common parental strain AB1157 (gsh+). The three strains showed identical sensitivity to H2O2. E. coli 821 was more resistant than AB1157 and JTG10 to menadione, cumene hydroperoxide, and N-ethylmaleimide. This resistance was not related to the gsh mutation because the other gsh- mutant and the parental strain showed similar sensitivity to these oxidants. The measured activities of NADPH:menadione diaphorase and glucose-6-phosphate dehydrogenase and the extracellular level of menadione suggested that the enhanced resistance of E. coli 821 to menadione might be due to decreased diaphorase activity, but not to a lowered rate of menadione uptake.  相似文献   

15.
X-ray absorption spectroscopy has been used to investigate binding of selenohomocysteine to cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthase enzymes of Escherichia coli. We have shown previously [Peariso et al. (1998) J. Am. Chem. Soc. 120, 8410-8416] that the Zn sites in both enzymes show an increase in the number of sulfur ligands when homocysteine binds. The present data provide direct evidence that this change is due to coordination of the substrate to the Zn. Addition of L-selenohomocysteine to either MetE or the N-terminal fragment of MetH, MetH(2-649), causes changes in the zinc X-ray absorption near-edge structure that are remarkably similar to those observed following the addition of L-homocysteine. Zinc EXAFS spectra show that the addition of L-selenohomocysteine changes the coordination environment of the zinc in MetE from 2S + 2(N/O) to 2S + 1(N/O) + 1Se and in MetH(2-649) from 3S + 1(N/O) to 3S + 1Se. The Zn-S, Zn-Se, and Se-S bond distances determined from the zinc and selenium EXAFS data indicate that the zinc sites in substrate-bound MetE and MetH(2-649) both have an approximately tetrahedral geometry. The selenium edge energy for selenohomocysteine shifts to higher energy when binding to either methionine synthase enzyme, suggesting that there is a slight decrease in the effective charge of the selenium. Increases in the Zn-Cys bond distances upon selenohomocysteine binding together with identical magnitudes of the shifts to higher energy in the Se XANES spectra of MetE and MetH(2-649) suggest that the Lewis acidity of the Zn sites in these enzymes appears the same to the substrate and is electronically buffered by the Zn-Cys interaction.  相似文献   

16.
Oxidative phosphorylation in Escherichia coli   总被引:7,自引:0,他引:7  
  相似文献   

17.
Oxidative stress during cardiac arrest may inactivate myocardial enzymes and thereby exacerbate ischemic derangements of myocardial metabolism. This study examined the impact of cardiac arrest on left ventricular enzymes. Beagles were subjected to 5 min of cardiac arrest and 5 min of open-chest cardiac compressions (OCCC) before epicardial direct current countershocks were applied to restore sinus rhythm. Glutathione/glutathione disulfide redox state (GSH/GSSG) and a panel of enzyme activities were measured in snap-frozen left ventricle. To test whether oxidative stress during arrest inactivated the enzymes, metabolic (pyruvate) or pharmacological (N-acetyl-l-cysteine) antioxidants were infused intravenously for 30 min before arrest. During cardiac arrest, activities of phosphofructokinase, citrate synthase, aconitase, malate dehydrogenase, creatine kinase, glucose-6-phosphate dehydrogenase, and glutathione reductase fell by 56, 81, 55, 34, 42, 55, and 45%, respectively, coincident with 50% decline in GSH/GSSG. OCCC effected full recovery of glutathione reductase and partial recovery of citrate synthase and aconitase, in parallel with GSH/GSSG. Phosphofructokinase, malate dehydrogenase, creatine kinase, and glucose-6-phosphate dehydrogenase recovered only after cardioversion. Antioxidant pretreatments augmented phosphofructokinase, aconitase, and malate dehydrogenase activities before arrest and enhanced these activities, as well as those of citrate synthase and glucose-6-phosphate dehydrogenase, during arrest. In conclusion, cardiac arrest reversibly inactivates several important myocardial metabolic enzymes. Antioxidant protection of these enzymes implicates oxidative stress as a principal mechanism of enzyme inactivation during arrest.  相似文献   

18.
Oxidative stress inactivates the human DNA mismatch repair system   总被引:18,自引:0,他引:18  
In the human DNA mismatch repair(MMR) system, hMSH2 forms the hMutS and hMutS complexes withhMSH6 and hMSH3, respectively, whereas hMLH1 and hPMS2 form thehMutL heterodimer. These complexes, together with other componentsin the MMR system, correct single-base mismatches and smallinsertion/deletion loops that occur during DNA replication.Microsatellite instability (MSI) occurs when the loops in DNAmicrosatellites are not corrected because of a malfunctioning MMRsystem. Low-frequency MSI (MSI-L) is seen in some chronicallyinflamed tissues in the absence of genetic inactivation of the MMRsystem. We hypothesize that oxidative stress associated with chronicinflammation might damage protein components of the MMR system, leadingto its functional inactivation. In this study, we demonstrate thatnoncytotoxic levels of H2O2 inactivate bothsingle-base mismatch and loop repair activities of the MMR system in adose-dependent fashion. On the basis of in vitro complementation assaysusing recombinant MMR proteins, we show that this inactivation is mostlikely due to oxidative damage to hMutS, hMutS, and hMutLprotein complexes. We speculate that inactivation of the MMR functionin response to oxidative stress may be responsible for the MSI-L seenin nonneoplastic and cancer tissues associated with chronic inflammation.

  相似文献   

19.
Regulation of methionine synthesis in Escherichia coli   总被引:3,自引:1,他引:2  
  相似文献   

20.
Chemotaxis and methionine metabolism in Escherichia coli   总被引:7,自引:0,他引:7  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号