首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
复杂易位遗传效应的探讨—附一例罕见复杂易位核型   总被引:3,自引:1,他引:2  
刘京  杜可明  宗传龙  李效良  郭淼 《遗传》2001,23(6):515-517
本报道一例罕见复杂易位核型:46,XX,t(1;14;10)。并到往资料,探讨和分析复杂易位和一般平衡易位对表型及生育的遗传效应。结果显示,一般易位导致智能低下和多发畸形的频率各为3.57%,复杂易位所致智能低下频率为21.73%, 多发畸形的频率为17.39%。提示复杂2易位所致智能低下和畸形频率明显高于一般易位。  相似文献   

2.
The translocation into Escherichia coli cytoplasmic membrane vesicles of a protein containing an uncleavable signal peptide was studied. The signal peptide cleavage site of the ompF-lpp chimeric protein, a model secretory protein, was changed from Ala-Ala to Phe-Pro through oligonucleotide-directed site-specific mutagenesis of the ompF-lpp gene on a plasmid. The mutant protein was no longer processed by the signal peptidase. When proteinase K treatment was adopted as a probe for protein translocation into inverted membrane vesicles, the mutant protein exhibited rapid and almost complete translocation, most likely due to the lack of premature cleavage of the signal peptide before the translocation. This result also indicates that cleavage of the signal peptide is not required for translocation of the mature domain of the protein. The establishment of an efficient system made it possible to perform precise and quantitative analysis of the translocation process. The translocation was time-dependent, vesicle-dependent, and required ATP and NADH. Translocation into membrane vesicles was also observed with the uncleavable precursor protein purified by means of immunoaffinity chromatography, although the efficiency was appreciably low. The translocation required only ATP and NADH. Addition of the cytosolic fraction did not enhance the translocation.  相似文献   

3.
Yahr TL  Wickner WT 《The EMBO journal》2001,20(10):2472-2479
The Tat (twin-arginine translocation) pathway is a Sec-independent mechanism for translocating folded preproteins across or into the inner membrane of Escherichia coli. To study Tat translocation, we sought an in vitro translocation assay using purified inner membrane vesicles and in vitro synthesized substrate protein. While membrane vesicles derived from wild-type cells translocate the Sec-dependent substrate proOmpA, translocation of a Tat-dependent substrate, SufI, was not detected. We established that in vivo overexpression of SufI can saturate the Tat translocase, and that simultaneous overexpression of TatA, B and C relieves this SufI saturation. Using membrane vesicles derived from cells overexpressing TatABC, in vitro translocation of SufI was detected. Like translocation in vivo, translocation of SufI in vitro requires TatABC, an intact membrane potential and the twin-arginine targeting motif within the signal peptide of SUFI: In contrast to Sec translocase, we find that Tat translocase does not require ATP. The development of an in vitro translocation assay is a prerequisite for further biochemical investigations of the mechanism of translocation, substrate recognition and translocase structure.  相似文献   

4.
We suppose that folding of proteins occurs cotranslationally by the following scheme. The polypeptide chains enter the folding sites from protein translocation complexes (ribosome, translocation machinery incorporated in membranes) directionally with the N-terminus and gradually. The chain starts to fold as soon as its N-terminal residue enters the folding site from the translocation complex. The folding process accompanies the translocation of the chain to its folding site and is completed after the C-terminal residue leaves the translocation complex. Proteins fold in sequential stages, by translocation of their polypeptide into folding compartments. At each stage a particular conformation of the N-terminal part of the chain that has emerged from the translocation complex is formed. The formation of both the particular conformations of the N-terminal chain segment at each folding stage and the final native protein conformation at the last stage occurs in a time that does not exceed the duration of the fastest elongation cycle on the ribosome.  相似文献   

5.
The paper summarizes studies of the molecular mechanism of the dynamic function of the ribosome, i. e. translocation, performed in the author's laboratory during the past decade. The hypothesis of the locking-unlocking of the ribosomal subparticles and the kinematical model of the working ribosome, the processes of spontaneous (factor-free) and factor-dependent translocation, the sequence of events in the factor-dependent translocation, the energetics of translocation and the contribution of the elongation factors with GTP are considered. The following conclusions are made: (1) the translocation mechanism is intrinsic to the structural organization of the ribosome itself but not introduced by the protein elongation factors; (2) the transpeptidation reaction is one of the sources of energy for the work of the translocation mechanism; (3) the protein elongation factors with GTP impart additional energy to the ribosome, including that for translocation, and thus ensure excess power which is realized, in particular, in the increase of the translocation rate and its resistance against inhibitors and hindrances; (4) the promoting role of the elongation factors with GTP does not proceed by a direct conjugation of GTP hydrolysis with translocation, but through the affinity of the elongation factors to the ribosome, with a subsequent compensation of the affinity at the expense of GTP cleavage.  相似文献   

6.
Elongation factor (EF) G promotes tRNA translocation on the ribosome. We present three-dimensional reconstructions, obtained by cryo-electron microscopy, of EF-G-ribosome complexes before and after translocation. In the pretranslocation state, domain 1 of EF-G interacts with the L7/12 stalk on the 50S subunit, while domain 4 contacts the shoulder of the 30S subunit in the region where protein S4 is located. During translocation, EF-G experiences an extensive reorientation, such that, after translocation, domain 4 reaches into the decoding center. The factor assumes different conformations before and after translocation. The structure of the ribosome is changed substantially in the pretranslocation state, in particular at the head-to-body junction in the 30S subunit, suggesting a possible mechanism of translocation.  相似文献   

7.
The tight coupling between ongoing translation and translocation across the mammalian endoplasmic reticulum has made it difficult to determine the requirements that are specific for translocation. We have developed an in vitro assay that faithfully mimics the co-translational targeting and translocation of the amino terminus of opsin without ongoing translation. Using this system we demonstrate that this post-translational targeting and translocation requires nucleotide triphosphates but not cytosolic proteins. The addition of GTP alone was sufficient to fully restore targeting. The addition of ATP was not specifically required, and non-hydrolyzable analogs of ATP that blocked 90% of the ATPase activity also had no inhibitory effect on translocation.  相似文献   

8.
The translocation mode of preprolactin (pPL) across mammalian endoplasmic reticulum was reinvestigated in light of recent findings that nascent secretory polypeptides synthesized in the presence of a highly reducing environment could be translocated posttranslationally and independently of their attachment to the ribosome (Maher, P. A., and S. J. Singer, 1986, Proc. Natl. Acad. Sci. USA, 83:9001-9005). The effects of the reducing agent dithiothreitol (DTT) on pPL synthesis and translocation were studied in this respect. The translocation of pPL was shown to take place only cotranslationally. The apparent posttranslational translocation was due to ongoing chain synthesis irrespective of the presence of high concentrations of DTT. When synthesis was completely blocked, no translocation was observed in the presence or absence of DTT. The synthesis of pPL was retarded by DTT, while its percent translocation was enhanced. The retardation in synthesis was reflected in reduced rates of initiation and elongation. As a consequence of this retardation, which increases the ratio of microsomes to nascent chains, and of possible effects on the conformation of nascent pPL and components of the translocation apparatus, DTT may expand the time and chain length windows for nascent chain translocation competence.  相似文献   

9.
The translocation of plastocyanin across the thylakoid membrane in Pisum sativum has been studied in reconstitution assays and using chimeric constructs. The reconstitution assays demonstrate that plastocyanin translocation is absolutely dependent on the presence of a stromal factor(s) and nucleotide triphosphates (NTPs), whereas neither element is required for the translocation of the 23 or 16 kDa proteins of the oxygen-evolving complex. Previous studies had revealed that the transthylakoidal delta pH is essential for translocation of the 23 and 16 kDa proteins but unnecessary for plastocyanin translocation. The basis for these mechanistic differences has been tested by analysing the translocation of a chimeric construct consisting of the presequence of the 23 kDa protein linked to the mature plastocyanin sequence. This construct is efficiently imported into thylakoids in the absence of stromal extracts or NTPs and translocation across the thylakoid membrane within intact chloroplasts is totally inhibited by the uncoupler nigericin: the translocation requirements are thus identical to those of the pre-23 kDa protein and diametrically opposite to those of pre-plastocyanin. Transport across the thylakoid membrane of a second fusion protein, consisting of the presequence of the 16 kDa protein linked to mature plastocyanin, is also dependent on a delta pH. The data suggest that two distinct systems are involved in the translocation of proteins across the thylakoid membrane, with each system recognizing specific signals within the presequences of a subset of lumenal protein precursors.  相似文献   

10.
11.
Inhibition of TnA translocation by TnA.   总被引:19,自引:6,他引:13       下载免费PDF全文
Plasmids already containing TnA showed decreased susceptibility to the translocation of a further TnA unit when compared with related plasmids that did not contain TnA. The translocation immunity imposed by TnA is exerted only on the plasmid of which it is part. It is suggested that this desensitization by a translocation unit is a general phenomenon that reduces the mutational effects of translocation.  相似文献   

12.
The effect of temperature on the translocation frequency of the Tn3 element was investigated. The temperature optimum for translocation of Tn3 was in the range from 26 to 30 degrees C. At temperatures above 30 degrees C, the translocation frequency decreased rapidly and linearly; at 36 degrees C it was only 5% of the frequency observed at 30 degrees C. The duration and reversibility of the temperature effect were utilized to demonstrate a requirement for protein synthesis in the translocation process.  相似文献   

13.
1. The mechanism of adenine nucleotide translocation in mitochondria isolated from rat liver was further examined by using the local anaesthetics procaine, butacaine, nupercaine and tetracaine as perturbators of lipid-protein interactions. Each of these compounds inhibited translocation of ADP and of ATP; butacaine was the most effective with 50% inhibition occurring at 30mum for 200mum-ATP and at 10mum for 200mum-ADP. The degree of inhibition by butacaine of both adenine nucleotides was dependent on the concentration of adenine nucleotide present; with low concentrations of adenine nucleotide, low concentrations of butacaine-stimulated translocation, but at high concentrations (greater than 50mum) low concentrations of butacaine inhibited translocation. Butacaine increased the affinity of the translocase for ATP to a value which approached that of ADP. 2. Higher concentrations of nupercaine and of tetracaine were required to inhibit translocation of both nucleotides; 50% inhibition of ATP translocation occurred at concentrations of 0.5mm and 0.8mm of these compounds respectively. The pattern of inhibition of ADP translocation by nupercaine and tetracaine was more complex than that of ATP; at very low concentrations (less than 250mum) inhibition ensued, followed by a return to almost original rates at 1mm. At higher concentrations inhibition of ADP translocation resulted. 3. That portion of ATP translocation stimulated by Ca(2+) was preferentially inhibited by each of the local anaesthetics tested. In contrast, inhibition by the anaesthetics of ADP translocation was prevented by low concentrations of Ca(2+). 4. The data provide further support for our hypothesis that lipid-protein interactions are important determinants in the activity of the adenine nucleotide translocase in mitochondria.  相似文献   

14.
Hartt CE 《Plant physiology》1970,45(2):183-187
The translocation of radioactive photosynthate was studied in blades detached from plants which had been grown in nutrient solution with and without potassium. Basipetal translocation decreased in the blades of plants deprived of potassium, even when deficiency symptoms were not visible. In such slightly potassium-deficient leaves, translocation was decreased in the light but not in the dark. More severe potassium deficiency decreased translocation both in darkness and in light. Potassium deficiency decreased translocation at light intensities giving no difference in rate of photosynthesis between plus and minus potassium leaves and even at light intensities at which there was no net fixation of carbon dioxide. At all levels of deficiency, the relative decrease in translocation was greater than the relative decrease in photosynthesis. Translocation was affected at potassium deficiency levels which had no effect upon photosynthesis.  相似文献   

15.
C-tail-anchored proteins are defined by an N-terminal cytosolic domain followed by a transmembrane anchor close to the C terminus. Their extreme C-terminal polar residues are translocated across membranes by poorly understood post-translational mechanism(s). Here we have used the yeast system to study translocation of the C terminus of a tagged form of mammalian cytochrome b(5), carrying an N-glycosylation site in its C-terminal domain (b(5)-Nglyc). Utilization of this site was adopted as a rigorous criterion for translocation across the ER membrane of yeast wild-type and mutant cells. The C terminus of b(5)-Nglyc was rapidly glycosylated in mutants where Sec61p was defective and incapable of translocating carboxypeptidase Y, a well known substrate for post-translational translocation. Likewise, inactivation of several other components of the translocon machinery had no effect on b(5)-Nglyc translocation. The kinetics of translocation were faster for b(5)-Nglyc than for a signal peptide-containing reporter. Depletion of the cellular ATP pool to a level that retarded Sec61p-dependent post-translational translocation still allowed translocation of b(5)-Nglyc. Similarly, only low ATP concentrations (below 1 microm), in addition to cytosolic protein(s), were required for in vitro translocation of b(5)-Nglyc into mammalian microsomes. Thus, translocation of tail-anchored b(5)-Nglyc proceeds by a mechanism different from that of signal peptide-driven post-translational translocation.  相似文献   

16.
L Chen  P C Tai 《Journal of bacteriology》1987,169(6):2373-2379
The effects of several membrane antibiotics and other agents on ATP-dependent protein translocation were examined in membrane vesicles under conditions where no significant proton motive force was present. The membrane perturbants ethanol and procaine abolished ATP-dependent protein translocation. Phenethyl alcohol at low concentrations abolished translocation, whereas at high concentrations it allowed precursors to be translocated but inhibited their processing. Translocation of precursors promoted by phenethyl alcohol was temperature dependent and occurred without an added energy source but was enhanced by ATP. However, such precursors could not be further processed to mature forms upon removal of the alcohol. The membrane-active antibiotics polymyxin B and gramicidin S were strong inhibitors of translocation, whereas gramicidin D, cerulenin, and mycobacillin had no effect even at higher concentrations, indicating some specificity in interference with protein translocation. Duramycin, an antibiotic previously shown to affect protein-lipid interaction, severely impaired protein translocation. These results showed that membrane structures play important roles, either directly or indirectly, in protein translocation. Chelating agents 1,10-phenanthroline and EDTA, but not EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid], also abolished protein translocation.  相似文献   

17.
The protein translocation system of Escherichia coli was solubilized and reconstituted, using the octylglucoside dilution method, into liposomes prepared from E. coli phospholipids. SecA, ATP, phospholipids and membrane proteins were found to be essential for the translocation of a model secretory protein, uncleavable OmpF-Lpp. Phospholipids were found to play roles not only in liposome formation but also in the stabilization of membrane proteins during the octylglucoside extraction. The effects of IgGs specific to five distinct regions of the SecY molecule on protein translocation into proteoliposomes were examined. IgGs specific to the amino- and carboxyl-terminal regions of the SecY molecule strongly inhibited the translocation activity, indicating the participation of SecY in the translocation. Generation of a proton motive force due to the simultaneous reconstitution of F0F1-ATPase was also observed in the presence of ATP. An ATP-generating system consisting of creatine phosphate and creatine kinase significantly enhanced the formation of the proton motive force and the protein translocation activity of the proteoliposomes. Collapse of the proton motive force thus generated partially inhibited the translocation.  相似文献   

18.
Translocation of the mRNA-tRNA complex in the ribosome, which is catalyzed by elongation factor EF-G, is one of critical steps in the elongation cycle of protein synthesis. Besides this conventional forward translocation, the backward translocation can also occur, which can be catalyzed by elongation factor LepA. However, the molecular mechanism of the translocation remains elusive. To understand the mechanism, here we study theoretically the dynamics of the forward translocation under various nucleotide states of EF-G and the backward translocation in the absence of and in the presence of LepA. We present a consistent explanation of spontaneous forward translocations in the absence of EF-G, the EF-G-catalyzed forward translocations in the presence of a non-hydrolysable GTP analogue and in the presence of GTP, and the spontaneous and LepA-catalyzed backward translocation. The theoretical results provide quantitative explanations of a lot of different, independent experimental data, and also provide testable predictions.  相似文献   

19.
An alternative pseudolinkage procedure for isolating homozygotes of autosomal translocations has been developed with the mosquito Culex tarsalis (Coquillet). The first step was to induce a translocation heterozygote in a population that was marked with recessive mutants. Interbred translocation heterozygotes produced translocation homozygotes that were phenotypically different from their translocation heterozygote and normal siblings. Thus, a translocation homozygote line of this species was selected and established in shorter time and with less effort than by prior pseudolinkage procedure.  相似文献   

20.
The yeast endoplasmic reticulum has three distinct protein translocation channels. The heterotrimeric Sec61 and Ssh1 complexes, which bind translating ribosomes, mediate cotranslational translocation of proteins targeted to the endoplasmic reticulum by the signal recognition particle (SRP) and SRP receptor targeting pathway, whereas the heptameric Sec complex has been proposed to mediate ribosome-independent post-translational translocation of proteins with less hydrophobic signal sequences that escape recognition by the SRP. However, multiple reports have proposed that the Sec complex may function cotranslationally and be involved in translocation or integration of SRP-dependent protein translocation substrates. To provide insight into these conflicting views, we induced expression of the tobacco etch virus protease to achieve rapid inactivation of the Sec complex by protease-mediated cleavage within the cytoplasmic domain of the Sec63 protein. Protein translocation assays conducted after tobacco etch virus protease induction revealed a complete block in translocation of two well-characterized substrates of the Sec complex, carboxypeptidase Y (CPY) and Gas1p, when the protease cleavage sites were located at structural domain boundaries in Sec63. However, integration of SRP-dependent membrane protein substrates was not detectably impacted. Moreover, redirecting CPY to the cotranslational pathway by increasing the hydrophobicity of the signal sequence rendered translocation of CPY insensitive to inactivation of the Sec complex. We conclude that the Sec complex is primarily responsible for the translocation of yeast secretome proteins with marginally hydrophobic signal sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号