共查询到20条相似文献,搜索用时 0 毫秒
1.
Michal Schwartz George J. Siegel Nelson Chen Bernard W. Agranoff 《Journal of neurochemistry》1980,34(6):1745-1752
Abstract: The denatured catalytic polypeptide of (Na+ , K+ )-ATPase of goldfish brain was purified and identified as the 32 P-labeled phosphoprotein. The protein served as immunogen for the preparation of rabbit antisera for immunohistochemical application to goldfish tissue sections, using the peroxidase-antiperoxidase indirect method. Labeling in brain cross-sections appears primarily in fibers of the optic nerve layer of the tectum. In optic nerve cross sections, labeling is restricted to fiber bundles. 相似文献
2.
Daniel Guillaume Thierry Grisar† Antonio V. Delgado-Escueta 《Journal of neurochemistry》1986,47(3):904-911
The effects of phenytoin, a potent antiepileptic drug, on the active transport of cations within membranes remain controversial. To assess the direct effects of phenytoin on the Na+,K+ pump, we studied the drug's influence on the phosphorylation of partially purified (Na+,K+)-ATPase from mouse brain. (Na+,K+)-ATPase subunits were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phenytoin, in vitro, decreased net phosphorylation of the (Na+,K+)-ATPase catalytic subunit in a dose-dependent manner (approximately 50% at 10(-4) M). When the conversion of E1-P to E2-P, e.g., the two major phosphorylated conformational states of (Na+,K+)-ATPase, was blocked by oligomycin or N-ethylmaleimide, phenytoin had no effect. The results suggest that phenytoin acts on the phosphatasic component of the reaction cycle, decreasing the phosphorylation level of the enzyme. 相似文献
3.
Alberta Leon Laura Facci Gino Toffano Sandro Sonnino Guido Tettamanti 《Journal of neurochemistry》1981,37(2):350-357
GM1 ganglioside binding to the crude mitochondrial fraction of rat brain and its effect on (Na+, K+)-ATPase were studied, the following results being obtained: (a) the binding process followed a biphasic kinetics with a break at 50 nM-GM1; GM1 at concentrations below the break was stably associated, while over the break it was loosely associated; (b) stably bound GM1 activated (Na+, K+)-ATPase up to a maximum of 43%; (c) the activation was dependent upon the amount of bound GM1 and was highest at the critical concentration of 20 pmol bound GM1 X mg protein-1; (d) loosely bound GM1 suppressed the activating effect on (Na+, K+)-ATPase elicited by firmly bound GM1; (e) GM1-activated (Na+, K+)-ATPase had the same pH optimum and apparent Km (for ATP) as normal (Na+, K+)-ATPase but a greater apparent Vmax; (f) under identical binding conditions (2 h, 37 degrees C, with 40 nM substance) all tested gangliosides (GM1, GD1a, GD1b, GT1b) activated (Na+, K+)-ATPase (from 26-43%); NeuNAc, sodium dodecylsulphate, sulphatide and cerebroside had only a very slight effect. It is suggested that the ganglioside activation of (Na+-K+)-ATPase is a specific phenomenon not related to the amphiphilic and ionic properties of gangliosides, but due to modifications of the membrane lipid environment surrounding the enzyme. 相似文献
4.
Reductions of Γ-Aminobutyric Acid and Glutamate Uptake and (Na+ + K+ )-ATPase Activity in Brain Slices and Synaptosomes by Arachidonic Acid 总被引:3,自引:0,他引:3
Arachidonic acid, a major polyunsaturated fatty acid of membrane phospholipids in the CNS, reduced the high-affinity uptake of glutamate and gamma-aminobutyric acid (GABA) in both rat brain cortical slices and synaptosomes. alpha-Aminoisobutyric acid uptake was not affected. Intrasynaptosomal sodium was increased concomitant with decreased (Na+ + K+)-ATPase activity in synaptosomal membranes. The reduction of GABA uptake in synaptosomes could be partially reversed by alpha-tocopherol. The inhibition of membrane-bound (Na+ + K+)-ATPase by arachidonic acid was not due to a simple detergent-like action on membranes, since sodium dodecyl sulfate stimulated the sodium pump activity in synaptosomes. These data indicate that arachidonic acid selectively modifies membrane stability and integrity associated with reductions of GABA and glutamate uptake and of (Na+ + K+)-ATPase activity. 相似文献
5.
The effects of short- and long-chain fatty acids on the cerebromicrovascular (Na+ + K+)-ATPase were investigated using specific [3H]ouabain binding to the enzyme. Specific binding increased linearly with total microvessel protein (37-110 micrograms) and was time-dependent with maximum binding obtained by 10 min. Arachidonic acid, but not palmitic acid, stimulated [3H]ouabain binding in a dose-dependent manner, with a 105% increase over basal levels at 100 microM arachidonic acid. Preincubation of the microvessels with arachidonic acid did not alter the stimulation observed. 4-Pentenoic acid stimulated [3H]ouabain binding only at high concentrations (10 mM). Scatchard analysis of [3H]ouabain binding to untreated microvessels yielded a single class of "high-affinity" binding sites with an apparent binding affinity (KD) of 64.7 +/- 2.0 nM and a binding capacity (Bmax) of 10.1 +/- 1.5 pmol/mg protein. In the presence of 100 microM arachidonic acid, a monophasic Scatchard plot also was obtained, but the KD significantly decreased to 51.9 +/- 2.7 nM (p less than 0.01), whereas the Bmax remained virtually unchanged (12.5 +/- 1.2 pmol/mg protein). The stimulation of [3H]ouabain binding in the presence of arachidonic acid was potentiated by 4-pentenoic acid, but not by indomethacin or eicosatetraynoic acid. These data suggest that long-chain polyunsaturated fatty acids may be involved in the regulation of blood-brain barrier (Na+ + K+)-ATPase and may play a role in the cerebral dysfunction associated with diseases in which plasma levels of nonesterified fatty acids are elevated. 相似文献
6.
Marina Mata† David J. Fink† Stephen A. Ernst‡ George J. Siegel† 《Journal of neurochemistry》1991,57(1):184-192
We used postembedding electron microscopic immunocytochemistry with colloidal gold to determine the ultrastructural distribution of Na+,K(+)-ATPase in the sciatic and optic nerves of the rat. Using a polyclonal antiserum raised against the denatured catalytic subunit of brain Na+,K(+)-ATPase, we found immunoreactivity along the internodal axolemma of myelinated fibers in both nerves. This antiserum did not produce labeling of nodal axolemma. These results suggest that an important site of energy-dependent sodium-potassium exchange is along the internodal axolemma of myelinated fibers in the mammalian CNS and PNS and that there may be differences between the internodal and nodal forms of the enzyme. 相似文献
7.
Abstract: To examine the role of nerve-specific (Na+ , K+ )-ATPase in chronic changes in noradrenergic activity, we examined the effects of noradrenergic denervation and hyperinnervation on p -nitrophenylphosphatase activity and on total and nerve-specific ouabain binding. High-affinity and erythrosin B-sensitive binding were compared as measurements of nerve-specific binding. Hyperinnervation and denervation was produced in cerebellum and cerebral cortex, respectively, by 6-hydroxydopamine lesions of the dorsal noradrenergic bundle. Hyperinnervation increased, and denervation decreased, enzyme activity, high-affinity ouabain inhibition, and erythrosin B-sensitive ouabain binding. As (Nat+ , K+ )-ATPase has a major role in the regulation of neural excitability and energy metabolism, and the ouabain binding site has been shown to have endogenous ligands, these changes in (Na+ , K+ )-ATPase may be important in the long-term regulation of neuron function by norepinephrine. 相似文献
8.
Alain Gerbi Marcel Debray Jean-Michel Maixent† Claude Chanez Jean-Marie Bourre 《Journal of neurochemistry》1993,60(1):246-252
Abstract: The Na+ sensitivity of whole brain membrane Na+ ,K+ -ATPase isoenzymes was studied using the differential inhibitory effect of ouabain (α1, low affinity for ouabain; α2, high affinity; and α3, very high affinity). At 100 m M Na+ , we found that the proportion of isoforms with low, high, and very high ouabain affinity was 21, 38, and 41%, respectively. Using two ouabain concentrations (10−5 and 10−7 M ), we were able to discriminate Na+ sensitivity of Na+ , K+ -ATPase isoenzymes using nonlinear regression. The ouabain low-affinity isoform, α1, exhibited high Na+ sensitivity [ K a of 3.88 ± 0.25 m M Na+ and a Hill coefficient ( n ) of 1.98 ± 0.13]; the ouabain high-affinity isoform, α2, had two Na+ sensitivities, a high ( K a of 4.98 ± 0.2 m M Na+ and n of 1.34 ± 0.10) and a low ( K a of 28 ± 0.5 m M Na+ and an n of 1.92 ± 0.18) Na+ sensitivity activated above a thresh old (22 ± 0.3 m M Na+ ); and the ouabain very-high-affinity isoform, α3, was resolved by two processes and appears to have two Na+ sensitivities (apparent K a values of 3.5 and 20 m M Na+ ). We show that Na+ dependence in the absence of ouabain is the result of at least of five Na+ reactivities. This molecular functional characteristic of isoenzymes in membranes could explain the diversity of physiological roles attributed to isoenzymes. 相似文献
9.
The effects of nerve growth factor (NGF) on induction of Na+,K+-ATPase were examined in a rat pheochromocytoma cell line, PC12h. Na+,K+-ATPase activity in a crude particulate fraction from the cells increased from 0.37 +/- 0.02 (n = 19) to 0.55 +/- 0.02 (n = 20) (means +/- SEM, mumol Pi/min/mg of protein) when cultured with NGF for 5-11 days. The increase caused by NGF was prevented by addition of specific anti-NGF antibodies. Epidermal growth factor and insulin had only a small effect on induction of Na+,K+-ATPase. A concentration of basic fibroblast growth factor three times higher than that of NGF showed a similar potency to NGF. The molecular form of the enzyme was judged as only the alpha form in both the untreated and the NGF-treated cells by a simple pattern of low-affinity interaction with cardiotonic steroids: inhibition of enzyme activity by strophanthidin (Ki approximately 1 mM) and inhibition of Rb+ uptake by ouabain (Ki approximately 100 microM). As a consequence, during differentiation of PC12h cells to neuron-like cells, NGF increases the alpha form of Na+,K+-ATPase, but does not induce the alpha(+) form of the enzyme, which has a high sensitivity for cardiotonic steroid and is a characteristic form in neurons. 相似文献
10.
Ouabain Binding, ATP Hydrolysis, and Na+ ,K+ -Pump Activity During Chemical Modification of Brain and Muscle Na+ ,K+ -ATPase 总被引:1,自引:0,他引:1
J. Teisinger H. Zemková P. Svoboda E. Amler F. Vyskoil 《Journal of neurochemistry》1992,58(3):1066-1072
The effects of 16 group-specific, amino acid-modifying agents were tested on ouabain binding, catalytical activity of membrane-bound (rat brain microsomal), sodium dodecyl sulfate-treated Na+,K(+)-ATPase, and Na+,K(+)-pump activity in intact muscle cells. With few exceptions, the potency of various tryptophan, tyrosine, histidine, amino, and carboxy group-oriented drugs to suppress ouabain binding and Na+,K(+)-ATPase activity correlated with inhibition of the Na+,K(+)-pump electrogenic effect. ATP hydrolysis was more sensitive to inhibition elicited by chemical modification than ouabain binding (membrane-bound or isolated enzyme) and than Na+,K(+)-pump activity. The efficiency of various drugs belonging to the same "specificity" group differed markedly. Tyrosine-oriented tetranitromethane was the only reagent that interfered directly with the cardiac receptor binding site as its inhibition of ouabain binding was completely protected by ouabagenin preincubation. The inhibition elicited by all other reagents was not, or only partially, protected by ouabagenin. It is surprising that agents like diethyl pyrocarbonate (histidine groups) or butanedione (arginine groups), whose action should be oriented to amino acids not involved in the putative ouabain binding site (represented by the -Glu-Tyr-Thr-Trp-Leu-Glu- sequence), are equally effective as agents acting on amino acids present directly in the ouabain binding site. These results support the proposal of long-distance regulation of Na+,K(+)-ATPase active sites. 相似文献
11.
The Na+ ,K+ -ATPase: A Plausible Trigger for Voltage-Independent Release of Cytoplasmic Neurotransmitters 总被引:1,自引:0,他引:1
James V. O'Fallon Ronald W. Brosemer Joseph W. Harding 《Journal of neurochemistry》1981,36(2):369-378
A comparison was made between the releasability of eight neurotransmitters from eight regions of mouse brain in response to either 60 mM-K+ or 20 microM-ouabain, a specific inhibitor of the Na+,K+-ATPase. With few exceptions, all transmitters were released by either or both agents from each brain region examined. Potassium was superior in releasing the biogenic amines and acetylcholine, while the putative amino acid transmitters were generally releasable by both agents. Measurements of tissue depolarization using [3H]-tetraphenylphosphonium uptake indicated that 60 mM-K+ is capable of depolarizing brain tissue above the threshold necessary for initiating an action potential, but 20 microM-ouabain is not. The pattern of release by ouabain coupled with its failure to depolarize brain tissue at 20 microM suggests that inhibition of the Na+,K+-ATPase is capable of releasing cytoplasmic neurotransmitters in a voltage-independent manner. 相似文献
12.
Abstract: Na+ ,K+ -ATPase activity in nerve is reduced in rats with streptozotocin-induced diabetes; three different isoforms of the α (catalytic) subunit of the enzyme are present in nerve. Using western blot to determine subunit isoform polypeptide levels in sciatic nerve, we found a substantial reduction in α1-isoform polypeptide (88% at 3 weeks, 94% at 8 weeks) after induction of diabetes by streptozotocin. Reductions in α2 and α3 polypeptide were smaller and not statistically significant. The reduction in amount of all three isoform polypeptides in the nerve of 3-week diabetic animals was corrected by administration of insulin. Accumulation of α1 polypeptide at a nerve ligature indicated that rapid transport of that polypeptide in nerve occurs with normal kinetics. The results implicate a specific marked deficit in α1, much more than α2 or α3, catalytic subunit isoform of Na+ ,K+ -ATPase in the pathogenesis of diabetic neuropathy. 相似文献
13.
Migration of wild juvenile chinook salmon Oncorhynchus tshawytscha during the first 80 km of their 254 km migration through the Rogue River, Oregon, was significantly slower than that during the last 170 km. Gill Na+ , K+ -ATPase specific activity did not increase significantly during the first 38 km of migration. Specific activities during the next 43 km did increase significantly. Specific activities continued to increase as the fish moved downstream, reaching a maximum within 44 km from the Pacific Ocean. 相似文献
14.
The effect of alloxan diabetes on the activities of Na+,K+-ATPase and Mg2+-ATPase was studied in three regions of rat brain at various time intervals after the onset of diabetes. It was observed that Na+,K+-ATPase activity increased at early time intervals after diabetes, followed by a recovery to near control levels in all three regions of the brain. There was an overall increase in Mg2+-ATPase activity in all the regions. A reversal of the effect was observed with insulin administration to the diabetic rats. 相似文献
15.
Carlos Hermenegildo Vicente Felipo María-Dolores Miñana Santiago Grisolía 《Journal of neurochemistry》1992,58(4):1246-1249
We have tested if inhibition of protein kinase C is able to prevent and/or to restore the decrease of Na+,K(+)-ATPase activity in the sciatic nerve of alloxan-induced diabetic mice. Mice were made diabetic by subcutaneous injection of 200 mg of alloxan/kg of body weight. The activity of Na+,K(+)-ATPase decreased rapidly (43% after 3 days) and slightly thereafter (58% at 11 days). We show that intraperitoneal injection of 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7), an inhibitor of protein kinase C, prevents completely the loss of Na+,K(+)-ATPase activity produced by alloxan. Also, H7 injected into diabetic mice, 4-9 days after the injection of alloxan, restores the activity of the enzyme. The amount of activity recovered depends on the dose of H7 administered; complete recovery was reached with injection of 15 mg of H7/kg of body weight. The effect of H7 is transient, with a half-life of approximately 1 h. 相似文献
16.
In order to investigate the specificity of noradrenergic effects on Na+, K+-ATPase, we infused noradrenergic agonists into the cerebral ventricles of rats, with or without depletion of forebrain norepinephrine. Infusion of norepinephrine, isoproterenol, or phenylephrine increased ouabain binding in intact rats, whereas clonidine infusion decreased binding. Depletion of forebrain norepinephrine by destruction of the dorsal noradrenergic bundle reduced ouabain binding. Norepinephrine infusion reversed the effect of dorsal bundle lesion; isoproterenol and phenylephrine increased ouabain binding in lesioned rats, but did not restore the effect of the lesions. Clonidine had no effect in lesioned rats. Effects on Na+, K+-ATPase activity were similar, but smaller. These results suggest that stimulation of both alpha 1- and beta-noradrenergic receptors may be necessary for optimal Na+, K+-ATPase, and that clonidine reduces Na+, K+-ATPase indirectly through decreased norepinephrine release. 相似文献
17.
The aim of the present experiments was to study the effects of the neurotransmitters acetylcholine, noradrenaline, 5-hydroxytryptamine, and dopamine on the Na+,K+-ATPase of rat brain synaptosomal fractions. It is shown that dopamine at low concentrations specifically inhibits the Na+,K+-ATPase of synaptic membranes from the brain regions rich in dopaminergic endings, but has no effect on the synaptosomal Na+,K+-ATPase from the other parts of brain. Acetylcholine and noradrenaline have similar specific effects on Na+,K+-ATPase from cholinergic and adrenergic synaptosomes. The Na+,K+-ATPase of synaptic membranes from the different brain regions, characterised by different distributions of cholinergic, adrenergic, and 5-hydroxytryptaminergic endings, show different reactions with neurotransmitters. These data indicate a functional significance of the effects of the neurotransmitters on the synaptosomal Na+,K+-ATPase. 相似文献
18.
Paul M. Rowe William T. Link Charlene P. Osborn Harold Gainer R. Wayne Albers 《Journal of neurochemistry》1991,57(3):1088-1090
The distributions of alpha-subunit isoforms of the Na+,K(+)-ATPase in rat pituitary were determined by immunoblotting and immunohistochemistry. Immunoreactivity for all three forms is present in the neural lobe, whereas the anterior lobe contains only alpha 1 and alpha 2. Most areas of the intermediate lobe exhibit faint immunoreactivity for only alpha 1, but thin strands of cells which stain strongly for all three isoforms are also present in this lobe. The previously reported ouabain inhibitable Na+,K(+)-ATPase activity in the neural lobe is consistent with the presence of both alpha 2 and alpha 3 subunits. 相似文献
19.
Right-side-out plasma membrane vesicles were isolated from wheat roots using an aqueous polymer two-phase system. The purity and orientation of the vesicles were confirmed by marker enzyme analysis. Membrane potential (Ψ)-dependent 22Na+ influx and sodium/proton (Na+/ H+) antiport-mediated efflux across the plasma membrane were studied using these vesicles. Membrane potentials were imposed on the vesicles using either K+ gradients in the presence of valinomycin or H+ gradients. The ΔΨ was quantified by the uptake of the lipophilic cation tetraphenylphosphonium. Uptake of Na+ into the vesicles was stimulated by a negative ΔΨ and had a Km for extrav-esicular Na+ of 34.8 ± 5.9 mol m3. The ΔΨ-dependent uptake of Na+ was similar in vesicles from roots of hexaploid (cv. Troy) and tetraploid (cv. Langdon) wheat differing in a K+/Na+ discrimination trait, and was also unaffected by growth in 50 mol m?3 NaCl. Inhibition of ΔΨ-dependent Na+ uptake by Ca2+ was greater in the hexaploid than in the tetraploid. Sodium/proton antiport was measured as Na+-dependent, amiloride-inhibited pH gradient formation in the vesicles. Acidification of the vesicle interior was measured by the uptake of 14C-methylamine. The Na+/H+ antiport had a Km, for intravesicular Na+ of between 13 and 19 mol m?3. In the hexaploid, Na+/H+ antiport activity was greater when roots were grown in the presence of 50 mol m?3NaCl, and was also greater than the activity in salt-grown tetraploid wheat roots. Antiport activity was not increased in a Langdon 4D chromosome substitution line which carries a trait for K+/Na+ discrimination. It is concluded that neither of the transport processes measured is responsible for the Na+/K+ discrimination trait located on the 4D chromosome of wheat. 相似文献
20.
Rie Hosoi Toshio Matsuda Shoichi Asano Hiroaki Nakamura Hitoshi Hashimoto Kazuhiro Takuma Akemichi Baba 《Journal of neurochemistry》1997,69(5):2189-2196
Abstract: There are two α-subunit isoforms (α1 and α2) and two β-subunit isoforms (β1 and β2) of Na+ ,K+ -ATPase in astrocytes, but the functional heterodimer composition is not known. Ouabain (0.5–1.0 m M ) increased the levels of α1 and β1 mRNAs, whereas it decreased those of α2 and β2 mRNAs in cultured rat astrocytes. The increases in α1 and β1 mRNAs were observed at 6–48 h after addition of the inhibitor. Immunochemical analyses showed that ouabain increased α1 and β1, but not α2 and β2, proteins, and that the isoforms in control and ouabain-treated cultures were of glial origin. Low extracellular K+ and monensin (20 µ M ) mimicked the effect of ouabain on α1 mRNA. The ouabain-induced increase in α1 mRNA was blocked by the protein synthesis inhibitor cycloheximide (10 µ M ), the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane- N,N,N',N' -tetraacetic acid tetraacetoxymethyl ester (30 µ M ), and the calcineurin inhibitor FK506 (1 n M ). These findings indicate that chronic inhibition of Na+ ,K+ -ATPase up-regulates the α1 and β1, but not α2 and β2, isoforms in astrocytes, suggesting a functional coupling of α1β1 complex. They also suggest that intracellular Na+ , Ca2+ , and calcineurin may be involved in ouabain-induced up-regulation of the enzyme in astrocytes. 相似文献