首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

This study aims to quantify greenhouse gases (GHGs) from the production, transportation and utilization of charcoal and to assess the possibilities of decreasing greenhouse gases (GHGs) from the charcoal industry in general in Uganda. It also aims to assess the emission intensity of the Ugandan “charcoal production” sector compared to that of some other major charcoal producing nations.

Methods

This work was done in accordance with ISO 14040 methodology for life-cycle assessment (LCA), using GABi 4.0—a software for life-cycle assessment. A cradle-to-grave study was conducted, excluding emissions arising from machinery use during biomass cultivation and harvesting. The distance from charcoal production locations to Kampala was estimated using ArcGIS 10.0 software and a GPS tool. Emission data from a modern charcoal production process (PYREG methane-free charcoal production equipment), which complies with the German air quality standards (TA-Luft), was compared with emissions from a traditional charcoal production process. Four coupled scenarios were modelled to account for differences in the quantity of greenhouse gases emitted from the “traditional charcoal production phase”, “improved charcoal production phase (biomass feedstock sourced sustainably and unsustainably)”, “transportation phase” and “utilization phase”. Data for this study was obtained via literature review and onsite measurements.

Results and discussion

The results showed that greenhouse gases emitted due to charcoal supply and use of traditional production technique in Kampala was 1,554,699 tCO2eq, with the transportation phase accounting for approximately 0.15 % of total greenhouse gases emitted. The utilization phase (charcoal cookstoves) emitted 723,985 tCO2eq (46.6 %), while the charcoal production phase emitted 828,316 tCO2eq (53.3 %). Changing the charcoal production technology from a traditional method to an improved production method (PYREG charcoal process) resulted in greenhouse gases reductions for the city of 230,747 tCO2eq; however, by using sustainably sourced biomass, this resulted in reductions of 801,817 tCO2eq.

Conclusions

This study showcased and quantified possible GHG emission reduction scenarios for the charcoal industry in Uganda. The result of 3 tCO2eq emitted per tonne of charcoal produced, using earth mound method, can be applied to other countries in Eastern Africa where similar charcoal production methods are used; this will allow for somewhat better regional estimates of the inventory of greenhouse gas emissions from the production of charcoal. The results of this study also suggests that the primary use of charcoal for cooking will lead to increases in GHG emissions and increases in deforestation on the long term, if legal frameworks are not made to ensure that biomass used for charcoal production is obtained via sustainable sources or if alternative cheap energy-generating technologies for cooking are not developed and deployed to the masses.  相似文献   

2.

Background, aim, and scope

The rise in wood fuel consumption, particularly of charcoal, has been associated with increased deforestation in Ghana. Plantation developments from teak (Tectona grandis), bamboo (Bambusa balcooa), and Acacia auriculiformis are now being promoted to produce sustainable biomass for charcoal production. While all species have comparable charcoal quality, there is limited available data to elucidate the environmental impacts associated with their plantation development and use as biomass sources for producing charcoal. Therefore, this study quantified and compared the cradle-to-gate environmental impacts of producing charcoal from T. grandis, A. auriculiformis, and B. balcooa.

Methods

The study was conducted in accordance with ISO 14040/14044, an international procedural framework for performing life cycle analysis (LCA). For this study, the functional unit of charcoal used was 1 MJ energy produced from three species: T. grandis, A. auriculiformis, and B. balcooa. Data on B. balcooa plantations was collected from a B. balcooa-based intercropping system set up by the International Network for Bamboo and Rattan in Sekyere Central District, Ghana. Input data for A. auriculiformis and T. grandis came from the Forestry Commission of Ghana plantations established within the forest agroecological zone of Ghana. All input data came from primary local sources. Pollutant emissions were also calculated in order to analyze the contribution of all the flow processes to the emissions. The analysis used Simapro version 8, as well as life cycle inventory (LCI) databases of Ecoinvent V3 and Idemat 2015 (a database developed by Delft University of Technology, the Netherlands). The emissions were expressed as eco-costs and used as indicators in an impact assessment.

Results and discussion

The results showed that relative to B. balcooa, the total eco-cost (comprising of human health, ecosystem, resource depletion, and global warming eco-costs) of a cradle-to-gate production of 1 MJ of charcoal will be 140% higher with T. grandis and 113% higher with A. auriculiformis. The increased environmental impacts associated with T. grandis and A. auriculiformis occurred at their biomass production stage. As these species use comparatively large quantities of pesticides, weedicides, and fertilizers with high acidification, ozone depletion, and global warming potentials, their biomass production stage accounted for approximately 85% of their total eco-cost.

Conclusions

The study results suggest that B. balcooa plantations are the most environmentally viable option. In cases where T. grandis or A. auriculiformis plantations are widespread, improvement options at the biomass production stage are required in order to reduce their environmental costs.
  相似文献   

3.
Until recently the recovery of plant remains in Croatia was rare, resulting in few studies addressing the nature of Neolithic crop cultivation. This paper presents new archaeobotanical data from eleven Neolithic settlements in coastal and continental Croatia. Within continental Croatia, three sites dating to the Star?evo culture (early/middle Neolithic; ca. 6000–5300 cal bc) and six to the Sopot culture (late Neolithic; ca. 5300–4000 cal bc) are examined along with two Hvar culture sites (late Neolithic; ca. 4800–4000 cal bc) located along the coast. Different settlement types are included in the study: open air sites, tells and cave sites. From the data collected the most common crops identified were einkorn, emmer, barley, lentil, pea and flax, as well as the fruits Cornus mas (Cornelian cherry) and Physalis alkekengi (Chinese lantern), which were particularly dominant in the Sopot culture settlements. By examining formation processes, sieved crop processing products and by-products were identified at six of the sites, suggesting that cereals were processed on a day-to-day basis at the household level. In contrast, the remains from the late Neolithic coastal cave site of Turska Pe? suggest two distinct formation processes. At the eastern side of the cave the plant remains suggest that episodes of dung burning occurred, possibly to clear the cave of excess waste during seasonal habitation of the cave by herders and livestock. Towards the back of the cave, cereal remains and higher charcoal densities may suggest an area used for food preparation or cooking.  相似文献   

4.
吴金凤  王秀红 《生态学报》2017,37(9):2904-2912
以中国东部山东省平度市为案例区,通过识别重要的农地利用碳排放源和构建碳排放测算体系,包括农用化学物质投入间接碳排放、耗能碳排放、氮肥施用后导致的土壤直接N_2O释放、秸秆燃烧碳排放和牲畜养殖CH_4和N_2O排放,测算了1995—2013年农地利用的碳排放量;结合农产品产值分析了农地利用碳强度变化特征,结合农作物碳吸收分析了农地利用的碳可持续指数的变化规律。研究得出:(1)1995—2013年平度年均碳排放量的次序是:农资投入22.50万t牲畜养殖17.41万t秸秆燃烧6.62万t,其中秸秆燃烧碳排放呈逐年增加态势,而农资投入和畜牧养殖均呈逐年减少趋势。(2)平度农地利用碳强度变化结果表明,农产品产值增加速度超过农地利用碳排放速度,单位产值碳排放已从1995年的1.24 t/元降至2013年的0.35 t/元。(3)碳可持续性指数变化特征表明,平度农地利用过程中碳吸收大于碳排放,且碳可持续性指数以年均7.12%速率增长,故平度农作物生产期的碳吸收能够完全消纳农地利用过程中所产生碳排放。该研究不仅为中小尺度以及我国东部区域的农地利用碳排放及可持续发展提供科学依据,而且有益于推进我国农业的碳减排,并为国际全球环境变化人文因素计划中LUCC、碳循环等重大问题的研究提供基本素材。  相似文献   

5.
Summary Tests made to improve saccharification of cellulose byTrichoderma cellulases showed that charcoal used as an adsorbent minimized the end product inhibition. Charcoal adsorbed both cellobiose and glucose and did not affect the enzymatic hydrolysis of cellulose. Results showed that charcoal is as effective as -glucosidase in improving the enzymatic saccharification of cellulose.  相似文献   

6.

Background

An epidemic of carbon monoxide poisoning suicide by burning barbecue charcoal has occurred in East Asia in the last decade. We investigated the spatial and temporal evolution of the epidemic to assess its impact on the epidemiology of suicide in Taiwan.

Methods and Findings

Age-standardised rates of suicide and undetermined death by charcoal burning were mapped across townships (median population aged 15 y or over = 27,000) in Taiwan for the periods 1999–2001, 2002–2004, and 2005–2007. Smoothed standardised mortality ratios of charcoal-burning and non-charcoal-burning suicide and undetermined death across townships were estimated using Bayesian hierarchical models. Trends in overall and method-specific rates were compared between urban and rural areas for the period 1991–2007. The epidemic of charcoal-burning suicide in Taiwan emerged more prominently in urban than rural areas, without a single point of origin, and rates of charcoal-burning suicide remained highest in the metropolitan regions throughout the epidemic. The rural excess in overall suicide rates prior to 1998 diminished as rates of charcoal-burning suicide increased to a greater extent in urban than rural areas.

Conclusions

The charcoal-burning epidemic has altered the geography of suicide in Taiwan. The observed pattern and its changes in the past decade suggest that widespread media coverage of this suicide method and easy access to barbecue charcoal may have contributed to the epidemic. Prevention strategies targeted at these factors, such as introducing and enforcing guidelines on media reporting and restricting access to charcoal, may help tackle the increase of charcoal-burning suicides. Please see later in the article for the Editors'' Summary  相似文献   

7.

Background

The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol.

Methodology/Principal Findings

An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca2+) during pre-monsoon (Apr – May) which was higher by 162% than its annual mean whereas during winter (Dec – Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO4 2− and black carbon) were higher (76% for black carbon and 96% for fine mode SO4 2−) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon.

Conclusion/Significance

The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas.  相似文献   

8.
Morphological and biochemical data were analysed from 30 greenhouse-grown populations of EuropeanSilene latifolia. Six separate character sets (flavones, seed, pollen, capsules, male and female flower morphology) were used in the analyses. There was broad-scale congruence between trends of geographic variation in most character sets, with the populations being assigned to western (or southern and western) and eastern clusters. The eastern and western clusters abut along a transition zone that runs roughly from Belgium to the northern Balkans; this zone represents a region of relatively rapid change and contains populations intermediate between the eastern and western clusters. Variation in flower morphology was weak and discordant with variation in the other character sets. The origin and maintenance of the variation pattern is discussed in terms of migrational history and hybrid zones.  相似文献   

9.

Background and aims

In the Central Negev hills (Israel) many ancient terraced wadis exist, which captured run-off and caused gradual soil aggradation, which enabled agricultural practices. In these terraces, dark colored soil horizons were observed, containing charcoal, as can be found in Terra Preta soils, suggesting higher fertility compared to natural soils. The aim of our investigation was to investigate these anthropogenic soils and to study the effects of charcoal and ash addition on soil properties and crop growth.

Methods

We investigated 12 soil profiles, focusing on possible differences between light and dark colored soil horizons. We also investigated the effects of amendment of charcoal and ash on the growth of wheat (Triticum Aestivum L.) in a 40-day pot experiment involving two water regimes.

Results

Results show that charcoal content in light and dark horizons were both low (<0.2 %), but significantly lower bulk densities were found in dark colored horizons. In the crop experiment, charcoal addition resulted in decreased crop growth, while, in the water deficit regime, ash addition resulted in increased crop growth.

Conclusions

Considering the observed charcoal and the results from the crop experiment, we hypothesize that, in ancient run-off capturing agricultural systems, ash was purposefully added as fertilizer.  相似文献   

10.

Background and Aims

Volatile organic compound (VOC) emissions from biogenic sources are important contributors to chemical reactions in the air. Soil/forest floor VOCs contribute significantly to the ecosystem scale emissions, however, these emissions and their temporal and spatial variations are poorly characterised. The below-canopy VOC emissions have been measured mainly in campaigns; continuous measurements over the whole growing season are rare.

Methods

VOCs were measured from boreal forest floor over the snow-free season 2010 in southern Finland with automated flow-through chambers connected to proton transfer reaction-mass spectrometer (PTR-MS). We measured 10 masses in total, of which five quantitatively (M33, M45, M59, M69, M137).

Results

All of the fluxes showed clear diurnal and seasonal variation, being at their highest in early summer. Spatial variation in the fluxes was great and the lowest rates were found in chambers with dense vegetation cover. Also, VOCs deposition was observed regularly. Monoterpene (M137) emissions were one magnitude higher (up to 264 ng?m?2?s?1) than other emissions. The VOC fluxes correlated positively with temperature and light, while relative humidity correlated negatively.

Conclusions

Results indicated that forest floor plays a substantial role in the boreal forest total VOC emissions. Understanding the processes controlling VOC emissions requires more detailed analysis and long-time measurements with sufficient time resolution and analytical accuracy.  相似文献   

11.

Purpose

The aim of the present study is to assess the influence of two different attributional life cycle assessment (LCA) approaches, namely static LCA (sLCA) and dynamic LCA (dLCA), through their application to the calculation of the carbon footprint (CF) of the entire cork sector in Portugal. The effect of including biogenic carbon sequestration and emissions is considered as well.

Methods

sLCA is often described as a static tool since all the emissions are accounted for as if occurring at the same time which may not be the case in reality for greenhouse gases. In contrast, dLCA aims to evaluate the impact of life cycle greenhouse gas emissions on radiative forcing considering the specific moment when these emissions occur.

Results and discussion

The results show that the total CF of the cork sector differs depending on the approach and time horizon chosen. However, the greater it is the time horizon chosen, the smaller the difference between the CF results of the two approaches. Additionally, the inclusion of biogenic carbon sequestration and emissions also influences significantly the CF result. The cork sector is considered a net carbon source when biogenic carbon is excluded from the calculations and a net carbon sink when biogenic carbon is included in the calculations since more carbon is sequestered than emitted along the sector.

Conclusions

dLCA allows an overview of greenhouse gas emissions along the time. This is an advantage as it allows to identify and plan different management approaches for the cork sector. Even though dLCA is a more realistic approach, it is a more time-consuming and complex approach for long life cycles. The choice of time horizon was found to be another important aspect for CF assessment.
  相似文献   

12.
Adventitious shoots were induced on cotyledons of Pinus pinea. Among seven salt formulations, three carbon sources (sucrose, glucose and fructose), and two cytokinins [6-benzyladenine (BA) and thidiazuron (TDZ)] with and without [-naphthaleneacetic acid (NAA)], cotyledons grown on 1/2 MS medium containing sucrose and 30 M BA produced the highest frequency of shoot organogenesis (>90%) and mean number of shoots/explant (>40% of cotyledons produced over 20 shoots/cotyledon). As for the site of shoot organogenesis along the cotyledonary explant, the highest number of shoots per explant was observed along the basal segment of the cotyledon (distal to the hypocotyl) over all cytokinin and auxin treatments tested. Shoots were elongated on a growth regulator-free medium containing activated charcoal.  相似文献   

13.

Purpose

The crude palm oil (CPO) extraction is normally done by a wet extraction process, and wastewater treatment of the wet process emits high levels of greenhouse gases (GHGs). A dry process extracts mixed palm oil (MPO) from palm fruit without using water and has no GHG emissions from wastewater treatment. This work is aimed at determining the GHG emissions of a dry process and at evaluating GHG savings on changing from wet to dry process, including land use change (LUC) effects.

Methods

Life cycle assessment from cradle to gate was used. The raw material is palm fruits. The dry process includes primary production, oil room, and utilities. MPO is the main product, while palm cake and fine palm residue are co-products sold for animal feed. Case studies were undertaken without and with carbon stocks of firewood and of nitrogen recycling at plantations from fronds. Allocations by mass, economic, and heating values were conducted. The trading of GHG emissions from co-products to GHG emissions from animal feed was assessed. The GHG emissions or savings from direct LUC (dLUC) and from indirect LUC (iLUC) effects and for the change from wet to dry process were determined.

Results and discussion

Palm fruit and firewood were the major GHG emission sources. Nitrogen recycling on plantations from fronds significantly affects the GHG emissions. With the carbon stocks, the GHG emissions allocated by energy value were 550 kg CO2 eq/t MPO. The GHG emissions were affected by ?3 to 37% for the change from wet to dry process. When the plantation area was increased by 1 ha and the palm oil extraction was changed from wet to dry process, and the change included dLUC and iLUC, the GHG savings ranged from ?0.94 to 5.08 t CO2 eq/ha year. The iLUC was the main GHG emission source. The GHG saving mostly originated from the change of extraction process and from the dLUC effect. Based on the potential use of biodiesel production from oil palm, during 2015–2036 in Thailand, when the extraction process was changed and dLUC and iLUC effects were included, the saving in GHG emissions was estimated to range from ?35,454 to 274,774 t CO2 eq/year.

Conclusions

The change of palm oil extraction process and the LUC effects could minimize the GHG emissions from the palm oil industry. This advantage encourages developing policies that support the dry extraction process and contribute to sustainable developments in palm oil production.
  相似文献   

14.

Purpose

The rapid growth of vehicle sales and usage has highlighted the need for greenhouse gas (GHG) emission reduction in Macau, a special administrative region (SAR) of China. As the most primary vehicle type, light-duty vehicles (LDV, including light-duty gasoline vehicles (LDGVs) and light-duty diesel vehicles (LDDVs)) play a key role in promoting the GHG reduction and development of green transportation system in Macau.

Methods

This study, on the basis of real-world tested and statistical data, firstly performed a streamlined life-cycle assessment (SLCA) on LDVs, to evaluate the potential GHG emissions and reduction through shifting to hybrid electric vehicles (HEVs) and electric vehicles (EVs).

Results and discussion

The results show that the mean GHG emissions from the LDGVs, LDDVs, and HEVs per 100 km were 25.16, 20.30, and 15.00 kg CO2 eq, respectively. Under the current electricity mix in Macau, EVs with the emissions of 12.39 kg CO2 eq/100 km can achieve a significant GHG emission reduction of LDVs in Macau. The total GHG emissions from LDVs increased from 124.99 to 247.82 thousand metric tons over the periods 2001–2014, with a 5.42% annual growth rate. A scenario analysis indicated that the development of HEVs and EVs—especially EVs—has the potential to control the GHG emissions from LDVs. Under the electricity mix of natural gas (NG) and solar energy (SE), the GHG emissions from EVs would drop by about 22 and 28%, respectively, by 2030.

Conclusions

This study develops a useful approach to evaluate the potential GHG emissions and its reduction strategies in Macau. All the obtained results could be useful for decision makers, providing robust support for drawing up an appropriate plan for improving green transportation systems in Macau.
  相似文献   

15.

Aims

Two pot experiments in a “walk-in” growth chamber with controlled day and night temperatures were conducted to investigate the influence of elevated temperatures along with rice straw incorporation on methane (CH4) and nitrous oxide (N2O) emissions as well as rice yield.

Methods

Three temperature regimes–29/25, 32/25, and 35/30 °C (Exp. I) and 29/22, 32/25, and 35/28 °C (Exp. II), representing daily maxima/minima were used in the study. Two amounts of rice straw (0 and 6 t ha?1) were applied with four replications in each temperature regime. CH4 and N2O emissions as well as soil redox potential (Eh) were monitored weekly throughout the rice-growing period.

Results

Elevated temperatures increased CH4 emission rates, with a more pronounced effect from flowering to maturity. The increase in emissions was further enhanced by incorporation of rice straw. A decrease in soil Eh to <?100 mV and CH4 emissions was observed early in rice straw–incorporated pots while the soil without straw did not reach negative Eh levels (Exp. I) or showed a delayed decrease (Exp. II). Moreover, soil with high organic C (Exp. II) had higher CH4 emissions. In contrast to CH4 emissions, N2O emissions were negligible during the rice-growing season. The global warming potential (GWP) was highest at high temperature with rice straw incorporation compared with low temperature without rice straw. On the other hand, the high temperature significantly increased spikelet sterility and reduced grain yield (p?<?0.05).

Conclusions

Elevated temperature increased GWP while decreased rice yield. This suggests that global warming may result in a double negative effect: higher emissions and lower yields.  相似文献   

16.

Purpose

Conferences are an important element of scientific activity but can also be a major cause of environmental burden. With this in mind, we analysed the global warming emissions of the 2017 annual conference of the American Center for Life Cycle Assessment (ACLCA), in order to estimate the carbon footprint and identify potential ways to reduce it.

Methods

We used survey data from participants as well as literature sources to complete an attributional assessment of the greenhouse gas emissions per participant. A method to calculate the ‘ideal’ location is proposed, which can be used to identify ‘unreasonably’ distant conference locations.

Results and discussion

The average emissions per participant were found to be 952 kg CO2eq, but with a large variability due to differences in travelled distance. Connecting flights were found to increase emissions up to 32% compared to direct flights, due to the increased number of take-offs and landings.

Conclusions

Results indicate that future studies should use distance-dependent flight emissions to increase the accuracy of the assessment. Some measures, such as meat-free menus, had a relatively minor contribution to emission reductions, but could be important as scientists advocating for the reduction of environmental burden should lead by example.
  相似文献   

17.
Summary Wounded zygotic embryos of cultivated carrot produce somatic proembryos on hormone-free nutrient medium containing 1 mM NH 4 + as the sole nitrogen source. Continued maintenance of proembryos on this medium leads to a pure culture of preglobular stage proembryos (PGSPs). Ethylene had no effect on this process. Also, somatic embryo production was not affected by growing cultures on activated charcoal-impregnated filter papers. However, somatic proembryos initiated on activated charcoal papers were not maintainable as PGSPs and developed into later embryo stages. Normally, medium pH dropped from 5.7 to 4 during each subculture period, but when using activated charcoal papers the pH endpoint was around 6–7 due to a leachable substance(s) within the filter papers. When powdered, activated charcoal was used in the medium as an adsorbent of products potentially released after wounding, pH dropped at the normal rate and to the expected levels; proembryos did not mature into later embryo stages and were maintainable exclusively as PGSPs. Low pH ( 4) is detrimental to proembryo production, but is essential to maintaining PGSPs on hormone-free nutrient medium, whereas a sustained pH >5.7 allows continued development of PGSPs into later embryo stages.  相似文献   

18.
The introduction and development of cultivation in eastern Finland was studied by pollen and charcoal analysis of a palaeomagnetically dated sediment profile from Lake Orijärvi, in the vicinity of permanent prehistoric fields. The earliest changes of possibly anthropogenic origin are visible in the pollen data from 1630 b.c. onwards and indications of human impact become more evident from 500 b.c. onwards. According to finds of cereal pollen and AMS-dating of charred cereal grains from the oldest field layer, the onset of cultivation can be dated to the Merovingian period around a.d. 600. To a significant extent the pollen data reflect only the cultivation of Secale during the first 600 years. The marked intensification of agricultural activities including cultivation in permanent fields only becomes evident in the pollen data from about a.d. 1050 to 1080 onwards and the most intensive land use phase dates to a.d. 1300–1965. Archaeological and palaeoecological material indicate that swidden cultivation and permanent field cultivation were in use simultaneously during the late Iron Age. The combination of these techniques together with animal husbandry and hunting formed a subsistence strategy in the climatic border-zone outside the centres of the agricultural core areas.  相似文献   

19.
Two high-resolution pollen and charcoal analyses were constructed from sediments obtained from a small bay in eastern Finland in order to gain information on human activity during the Neolithic Stone Age, 5200–1800 bc. We used measurements of loss on ignition (LOI), magnetic susceptibility and geochemical analyses to describe the sedimentological characteristics. Palaeomagnetic dating and measurements of 137Cs-activity were supported by 14C-datings. The analyses revealed human activity between 4400 and 3200 bc, which is synchronous with archaeological cultures defined through different stages of Comb Ware pottery types and Middle Neolithic pottery types with asbestos as a primary temper. Direct evidence of Hordeum cultivation was dated to 4040–3930 cal bc. According to the pollen data, more significant effort was put into the production of fibres from hemp and lime than the actual cultivation of food.  相似文献   

20.

Purpose

Liquefied natural gas (LNG) is expected to become an important component of the UK’s energy supply because the national hydrocarbon reserves on the continental shelf have started diminishing. However, use of any carbon-based fuel runs counter to mitigation of greenhouse gas emissions (GHGs). Hence, a broad environmental assessment to analyse the import of LNG to the UK is required.

Methods

A cradle to gate life cycle assessment has been carried out of a specific but representative case: LNG imported to the UK from Qatar. The analysis covers the supply chain, from gas extraction through to distribution to the end-user, assuming state-of-the-art facilities and ships. A sensitivity analysis was also conducted on key parameters including the energy requirements of the liquefaction and vaporisation processes, fuel for propulsion, shipping distance, tanker volume and composition of raw gas.

Results and discussion

All environmental indicators of the CML methodology were analysed. The processes of liquefaction, LNG transport and evaporation determine more than 50% of the cradle to gate global warming potential (GWP). When 1% of the total gas delivered is vented as methane emissions leakage throughout the supply chain, the GWP increases by 15% compared to the GWP of the base scenario. The variation of the GWP increases to 78% compared to the base scenario when 5% of the delivered gas is considered to be lost as vented emissions. For all the scenarios analysed, more than 75% of the total acidification potential (AP) is due to the sweetening of the natural gas before liquefaction. Direct emissions from transport always determine between 25 and 49% of the total eutrophication potential (EP) whereas the operation and maintenance of the sending ports strongly influences the fresh water aquatic ecotoxicity potential (FAETP).

Conclusions

The study highlights long-distance transport of LNG and natural gas processing, including sweetening, liquefaction and vaporisation, as the key operations that strongly affect the life cycle impacts. Those cannot be considered negligible when the environmental burdens of the LNG supply chain are considered. Furthermore, the effect of possible fugitive methane emissions along the supply chain are critical for the impact of operations such as extraction, liquefaction, storage before transport, transport itself and evaporation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号