首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of various nitrogen sources on the synthesis and activity of nitrogenase was studied in the marine, non-heterocystous cyanobacterium Trichodesmium sp. NIBB1067 grown under defined culture conditions. Cells grown with N2 as the sole inorganic nitrogen source showed light-dependent nitrogenase activity (acetylene reduction). Nitrogenase activity in cells grown on N2 was not suppressed after 7 h incubation with 2 mM NaNO3 or 0.02 mM NH4Cl. However, after 3 h of exposure to 0.5 mM of urea, nitrogenase was inactivated. Cells grown in medium containing 2 mM NaNO3, 0.5 mM urea or 0.02 mM NH4Cl completely lacked the ability to reduce acetylene. Western immunoblots tested with polyclonal antisera against the Fe-protein and the Mo–Fe protein, revealed the following: (1) both the Fe-protein and the Mo–Fe protein were synthesized in cells grown with N2 as well as in cells grown with NaNO3 or low concentration of NH4Cl; (2) two bands (apparent molecular mass of 38 000 and 40 000) which cross-reacted with the antiserum to the Fe-protein, were found in nitrogen-fixing cells; (3) only one protein band, corresponding to the high molecular mass form of the Fe-protein, was found in cells grown with NaNO3 or low concentration of NH4Cl; (4) neither the Fe-protein nor the Mo–Fe protein was found in cells grown with urea; (5) the apparent molecular mass of the Fe-protein of Trichodesmium sp. NIBB1067 was about 5000 dalton higher than that of the heterocystous cyanobacterium, Anabaena cylindrica IAM-M1.  相似文献   

2.
When growing in laternating light-dark cycles, nitrogenase activity (acetylene reduction) in the filamentous, non-heterocystous cyanobacterium Oscillatoria sp. strain 23 (Oldenburg) is predominantly present during the dark period. Dark respiration followed the same pattern as nitrogenase. Maximum activities of nitrogenase and respiration appeared at the same time and were 3.6 mol C2H4 and 1.4 mg O2 mg Chl a -1·h-1, respectively. Cultures, adapted to light-dark cycles, but transferred to continuous light, retained their reciprocal rhythm of oxygenic photosynthesis and nitrogen fixation. Moreover, even in the light, oxygen uptake was observed at the same rate as in the dark. Oxygen uptake and nitrogenase activity coincided. However, nitrogenase activity in the light was 6 times as high (22 mol C2H4 mg Chl a -1·h-1) as compared to the dark activity. Although some overlap was observed in which both oxygen evolution and nitrogenase activity occurred simultaneously, it was concluded that in Oscillatoria nitrogen fixation and photosynthesis are separated temporary. If present, light covered the energy demand of nitrogenase and respiration very probably fulfilled a protective function.  相似文献   

3.
Toxicity of blooms of the cyanobacterium Trichodesmium to zooplankton   总被引:1,自引:0,他引:1  
The marine filamentous bloom-forming cyanobacteria Trichodesmium thiebautii and T. erythraeum were collected at locations in the Carribean during Jan.–Feb. 1991. They were screened for toxicity using Artemia salina and several species of copepods, which were harpacticoid grazers, filter-feeding calanoids, or cyclopoid copepods. Approximately 50% of the 89 T. thiebautii samples caused> 50% lethality of A. salina, though none of the 16 T. erythraeum samples caused> 25% lethality. The T. thiebautii bloom samples were toxic to the calanoid and cyclopoid copepods and non-toxic to the harpacticoid grazers. In contrast the T. erythraeum bloom samples were not toxic to any copepods tested.  相似文献   

4.
O'Neil  J. M.  Roman  M. R. 《Hydrobiologia》1994,292(1):235-240
Trichodesmium is a filamentous, colonial nitrogen fixing cyanobacteria, ubiquitous in tropical and subtropical regions of the world's oceans. Trichodesmium fixes atmospheric nitrogen and can comprise a significant fraction of total primary production in oceanic surface waters. Therefore, the consumption and fate of Trichodesmium has important consequences for understanding carbon and nitrogen cycling in the open ocean. The pelagic harpacticoid copepod Macrosetella gracilis uses Trichodesmium not only as a physical substrate for juvenile development, but also as a food source. Several different types of pelagic copepods (including several species of calanoids, harpacticoids and a poecilostomatoid species) were tested for ingestion of Trichodesmium by labelling the cyanobacteria with 14C. Only the pelagic harpacticoids ingested Trichodesmium. Here we report the first grazing rates based on 14C-uptake measurements for Macrosetella gracilis (0.173 µg C copepod–1 h–1), and the first quantitative measurements of both Miracia efferata (0.402 µg C copepod–1 h–1) and Oculosetella gracilis (0.126 µg C copepod–1 h–1) ingesting this cyanobacteria. Ingestion rates of M. gracilis and M. efferata on the two different species of Trichodesmium, T. thiebautii and T. erythraeum, as well as the two different colonial morphologies of T. thiebautii, spherical-shaped (puffs) and fusiform (tufts), were also compared. Both Miracia and Macrosetella had higher ingestion rates on the puff colonies than the tuft colonies of T. thiebautii.. Both also had higher ingestion rates of T. erythraeum than T. thiebautii. Trichodesmium thiebautii contains a previously reported neurotoxin which may be an important factor in determining trophodynamic interactions. Our results suggest that pelagic harpacticoid copepods can be quantitatively important in determining the fate of Trichodesmium carbon and nitrogen.  相似文献   

5.
Abstract In Trichodesmium contortum , nitrogenase was detected in only a limited number (about 10%) of microscopically distinguishable, consecutively arranged cells in central regions of the trichomes. Cells with nitrogenase also contained the photosystem II associated pigment phycoerythrin. These cells were not distinguishable from other cells on a structural basis, but were clearly visible at low magnification microscopy as all in the zone were more compact and shorter than those on either side. The compartmentalisation of nitrogenase into a chain of cells and in a possibly photosynthetic environment represents a previously undescribed phenomenon. The nitrogenase containing cells apparently perform the O2 protective function of heterocysts yet are different in several aspects.  相似文献   

6.
Trichodesmium sp., isolated from the Great Barrier Reef lagoon, was cultured in artificial seawater media containing a range of Fe concentration. Fe additions stimulated growth, N2 fixation, cellular chlorophyll a content, light-saturated chlorophyll a-specific gross photosynthetic capacity (Pm chla) and the dark respiration rate (Rd chla). Cell yields only doubled for 9 nM Fe relative to zero added Fe, whereas N2 fixation increased 11-fold considerably for 450 nM Fe. The results suggest that N2 fixation of Trichodesmium is more sensitive to Fe limitation than are the cell yields.  相似文献   

7.
Occurrence of nitrogen fixation among Vibrio spp.   总被引:1,自引:0,他引:1  
Virtually all Vibrio spp. known and available in culture collections and several newly isolated Vibrio sp. were tested for their ability to fix molecular nitrogen, using the acetylene reduction technique, the fixation of the heavy isotope 15N, and by growth on media devoid of combined nitrogen. Among the 27 species tested, four, including V. diazotrophicus, proved to be nitrogenase-positive. The potential of nitrogen fixation was now also discovered in V. natriegens, V. pelagius and V. cincinnatiensis. Among the 9 newly isolated strains, 4 were nitrogenase-positive. These strains were classified as V. diazotrophicus on the basis of DNA homology studies. Nitrogenase was only induced during growth under anaerobic conditions. Dissolved oxygen as low as 1 M inhibited nitrogenase completely. This inhibition at low oxygen concentration, however, was reversible. 50–100 M dissolved oxygen inhibited nitrogenase irreversibly.This work was carried out at Geomicrobiology Division, the University of Oldenburg, FRG  相似文献   

8.
9.
Plectonema boryanum exhibits temporal separation of photosynthesis and nitrogen fixation under diazotrophic conditions. During nitrogen fixation, the photosynthetic electron transport chain becomes impaired, which leads to the uncoupling of the PSII and PSI activities. A 30-40% increase in PSI activity and continuous generation of ATP through light-dependent processes seem to support the nitrogen fixation. The use of an artificial electron carrier that shuttles electrons between the plastoquinone pool and plastocyanin, bypassing cytochrome b/f complex, enhanced the photosynthetic electron transport activity five to six fold during nitrogen fixation. Measuring of full photosynthetic electron transport activity using methyl voilogen as a terminal acceptor revealed that the photosynthetic electron transport components beyond plastocyanin might be functional. Further, glycolate can act as a source of electrons for PSI for the nitrogen fixing cells, which have residual PSII activity. Under conditions when PSI becomes largely independent of PSII and glycolate provides electrons for PSI activity, the light-dependent nitrogen fixation also was stimulated by glycolate. These results suggest that during nitrogen fixation, when the photosynthetic electron transport from PSII is inhibited at the level of cytochrome b/f complex, an alternate electron donor system for PSI may be required for the cells to carry out light dependent nitrogen fixation.  相似文献   

10.
The filamentous non-heterocystous cyanobacterium Oscillatoria limosa was subjected to Western blot analyses using two antisera raised against the small subunit (Fe-protein) of the nitrogenase complex. Two polypeptides were recognized in nitrogen-fixing cultures irrespective of the antiserum used while no bands were detectable in nitrate-grown cultures. The apparent molecular weights of the two polypeptides were approximately 40.5 and 39.5 kDa respectively, with the former, probably an inactive form, dominating. In situ immunogold electron microscopy was used to reveal the cellular and subcellular localization on the Fe-protein. All cells of the trichomes of nitrogen-fixing O. limosa showed a dense label. The label was homogeneously distributed throughout the cytoplasm including the thylakoid area. Nitrate-grown cultures contained a very low label.Abbreviations SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis This study was supported by the Swedish Natural Science Research Counsil and the M. and M. Wallenberg Fund (to B. Bergman). We are grateful to Dr. S. Nordlund (University of Stockholm, Sweden) for providing us with the antiserum of Rhodospirillum rubrum nitrogenase and to Drs. S. Reich and P. Böger (University of Konstanz, FRG) for the antiserum of Anabaena variabilis. Skilful technical assistence by K. Östlund and E. Danielsson is gratefully acknowledged. We would also like to thank M. Villbrandt (University of Oldenburg, FRG) for providing cultures of Oscillatoria limosa and Dr. P. Lindblad for valuable discussions and suggestions.To whom correspondence should be addressed.  相似文献   

11.
Symploca PCC 8002 Kützing is a filamentous cyanobacterium that lacks the specialized cells, known as heterocysts, that protect nitrogenase from O2 in most aerobic N2-fixing cyanobacteria. Nevertheless, Symploca is able to carry out N2 fixation in the light under aerobic conditions. When cultures were grown under light/dark cycles, nitrogenase activity commenced and increased in the light phase and declined towards zero in the dark. Immunolocalization of dinitrogenase reductase in sectioned Symploca trichomes showed that the enzyme was present only in 9% of the cells. These cells lacked any obvious mechanical protection against atmospheric O2 and their ultrastructural characteristics were similar to those of cells that did not contain any dinitrogenase reductase. The nitrogenase-containing cells possessed carboxysomes that were rich in ribulose-1,5-bisphosphate carboxylase/oxygenase and phycoerythrin, a light harvesting pigment of PS II. This indicates that these cells had a capacity for both N2 fixation and photosynthesis. The significance of the localization pattern for dinitrogenase reductase is discussed in the context of N2 fixation in Symploca PCC 8002.  相似文献   

12.
The extent of carbon (C) and nitrogen (N) export to the deep ocean depends upon the efficacy of the biological pump that transports primary production to depth, thereby preventing its recycling in the upper photic zone. The dinitrogen-fixing (diazotrophic) Trichodesmium spp. contributes significantly to oceanic C and N cycling by forming extensive blooms in nutrient-poor tropical and subtropical regions. These massive blooms generally collapse several days after forming, but the cellular mechanism responsible, along with the magnitude of associated C and N export processes, are as yet unknown. Here, we used a custom-made, 2-m high water column to simulate a natural bloom and to specifically test and quantify whether the programmed cell death (PCD) of Trichodesmium mechanistically regulates increased vertical flux of C and N. Our findings demonstrate that extremely rapid development and abrupt, PCD-induced demise (within 2–3 days) of Trichodesmium blooms lead to greatly elevated excretions of transparent exopolymers and a massive downward pulse of particulate organic matter. Our results mechanistically link autocatalytic PCD and bloom collapse to quantitative C and N export fluxes, suggesting that PCD may have an impact on the biological pump efficiency in the oceans.  相似文献   

13.
Cultures of Trichodesmium from the Northern and Southern Great Barrier Reef Lagoon (GBRL) have been established in enriched seawater and artificial seawater media. Some cultures have been maintained with active growth for over 6years. Actively growing cultures in an artificial seawater medium containing organic phosphorus (glycerophosphate) as the principal source of phosphorus have also been established. Key factors that contributed to the successful establishment of cultures were firstly, the seed samples were collected from depth, secondly, samples were thoroughly washed and thirdly, incubations were conducted under relatively low light intensities (PAR 40–50molquantam–2s–1). N2 fixation rates of the cultured Trichodesmium were found to be similar to those measured in the GBRL. Specific growth rates of the cultures during the exponential growth phase in all enriched media were in the range 0.2–0.3day–1 and growth during this phase was characterised by individual trichomes (filaments) or small aggregations of two to three trichomes. Characteristic bundle formation tended to occur following the exponential growth phase, which suggests that the bundle formation was induced by a lack of a necessary nutrient e.g. Fe. Results from some exploratory studies showed that filament-dominated cultures of Trichodesmium grew over a range of relatively low irradiances (PAR 5–120molquantam–2s–1) with the maximum growth occurring at 40–50molquantam–2s–1. These results suggest that filaments of the tested strain are well adapted for growth at depth in marine waters. Other studies showed that growth yields were dependent on salinity, with maximum growth occurring between 30 and 37psu. Also the cell yields decreased by an order of magnitude with the reduction of Fe additions from 450 to 45nM. No active growth was observed with the 4.5nM Fe addition.  相似文献   

14.
Strains of filamentous, non-heterocystous cyanobacteria from the Pasteur Culture Collection (PCC), able to synthesize nitrogenase under anaerobic test conditions, were tested for growth with N2 as sole nitrogen source at low O2 partial pressure (less than 0.05%). Plectonema boryanum (PCC 73110) exhibited exponential growth under these conditions. This capacity was restricted to light intensities not exceeding 500 lux. Growth rates were 0.014/h at 200 and 0.023 at 500 lux and similar to those of anaerobic and aerobic control cultures with nitrate as N-source. For N2-fixing cultures incubated at 200 and 500 lux, acetylene reduction rates were 4–8 and 5–14 nmol C2H4 per mg protein per min, respectively. The ratio of phycocyanine to chlorophyll was higher (200 lux) or slightly reduced (500 lux) in N2-fixing cultures as compared to control cultures with nitrate as N-source. On the basis of epifluorescence microscopy and microfluorimetry, no differences in pigment contents were found between individual cells or filaments of N2-fixing cultures. Also no noteworthy differences were observed between the pycobiliprotein composition of individual cells in N2 fixing cultures as compared to nitrate-grown controls. Thus the observed exponential growth of P. boryanum at low light intensities implies simultaneous nitrogen fixation and oxygenic photosynthesis. Additional continuous culture experiments showed that N2-fixing exponential growth was dependent on O2 partial pressures lower than 0.2–0.4%.The other strains tested (PCC 6412, 6602, 7403, 7104) did not grow under such conditions.Abbreviations Chl chlorophyll - PBP phycobiliproteins - PC phycocyanin - PCC Pasteur Culture Collection - OD optical density  相似文献   

15.
16.
A. Hartmann 《Plant and Soil》1988,110(2):225-238
The nitrogenase activity ofAzospirillum spp. is efficiently regulated by environmental factors. InA. brasilense andA. lipoferum a rapid switch off of nitrogenase activity occurs after the addition of ammonium chloride. As in photosynthetic bacteria, a covalent modification of nitrogenase reductase (Fe-protein) is involved. InA. amazonense, a non-covalent mechanism causes only a partial inhibition of nitrogenase activity after ammonium chloride is added. In anaerobic conditions, nitrogenase reductase is also switched off by a covalent modification inA. brasilense andA. lipoferum. Short-time exposure ofAzospirillum to increased oxygen levels causes a partially reversible inhibition of nitrogenase activity, but no covalent modification is involved.Azospirillum spp. show variations in their oxygen tolerance. High levels of carotenoids confer a slightly improved oxygen tolerance. Certain amino acids (e. g. glutamate, aspartate, histidine and serine) affect growth and nitrogen fixation differently inAzospirillum spp. Amino acids may influence growth and nitrogen fixation ofAzospirillum in the association with plants.Azospirillum brasilense andA. halopraeferens are the more osmotolerant species. They utilize most amino acids poorly and accumulate glycine betaine, which also occurs in osmotically stressed grasses as a compatible solute to counteract osmotic stress. Nitrogen fixation is stimulated by glycine betaine and choline. Efficient iron acquisition is a prerequisite for competitive and aerotoleran growth and for high nitrogenase activity.Azospirillum halopraeferens andA. amazonense assimilate iron reasonably well, whereas growth of someA. brasilense andA. lipoferum strains is severely inhibited by iron limitation and by competition with foreign microbial iron chelators. However, growth of certain iron-limitedA. brasilense strains is stimulated by the phytosiderophore mugineic acid. Thus, various plant-derived substances may stimulate growth and nitrogen fixation ofAzospirillum.  相似文献   

17.
Colonies of the cyanobacterium Trichodesmium are abundant in the oligotrophic ocean, and through their ability to fix both CO2 and N2, have pivotal roles in the cycling of carbon and nitrogen in these highly nutrient-depleted environments. Trichodesmium colonies host complex consortia of epibiotic heterotrophic bacteria, and yet, the regulation of nutrient acquisition by these epibionts is poorly understood. We present evidence that epibiotic bacteria in Trichodesmium consortia use quorum sensing (QS) to regulate the activity of alkaline phosphatases (APases), enzymes used by epibionts in the acquisition of phosphate from dissolved-organic phosphorus molecules. A class of QS molecules, acylated homoserine lactones (AHLs), were produced by cultivated epibionts, and adding these AHLs to wild Trichodesmium colonies collected at sea led to a consistent doubling of APase activity. By contrast, amendments of (S)-4,5-dihydroxy-2,3-pentanedione (DPD)—the precursor to the autoinducer-2 (AI-2) family of universal interspecies signaling molecules—led to the attenuation of APase activity. In addition, colonies collected at sea were found by high performance liquid chromatography/mass spectrometry to contain both AHLs and AI-2. Both types of molecules turned over rapidly, an observation we ascribe to quorum quenching. Our results reveal a complex chemical interplay among epibionts using AHLs and AI-2 to control access to phosphate in dissolved-organic phosphorus.  相似文献   

18.
Developmental patterns related to nitrogen fixation in the heterocystous cyanobacteriumNostoc harboured in distinct colonies along the stem ofGunnera magellanica Lam. plantlets were examined using successive plant sections. Pronounced morphological, physiological and biochemical alterations in the cyanobacterium were demonstrated. Close to the growing apex the cyanobacterial biomass, contained in smallGunnera cells, was low and consisted mostly of vegetative cells showing a high density of different storage structures except for cyanophycin granules. In contrast, both the total and specific nitrogenase activity and the relative nitrogenase protein level were at maximum within this part; while the frequency of heterocysts increased from zero to 30% within the same area. The nitrogenase protein was localized only in the heterocysts throughout the plant. Further down theGunnera stem there was a progressive increase in both the cyanobacterial biomass and the heterocyst frequency, which finally constituted about 60% of the cyanobacterial cell population. Throughout this part of the stem, cyanophycin granules were frequent in the vegetativeNostoc cells. At the base of the stem, degeneratedNostoc cells dominated and the nitrogenase activity was close to zero, although the nitrogenase protein remained. Degeneration of theNostoc cells and leaf shedding coincided. Both intact plants (approx. 20 mm in height) and plant stem sections (2 mm in length) showed substantial nitrogenase activity, although sectioning caused a 30% reduction in total nitrogenase activity.  相似文献   

19.
Abstract The nonheterocystous, filamentous cyanobacterium, Plectonema boryanum fixes nitrogen only under microaerophilic conditions. The organization of nitrogen fixation genes ( nifH, D, K ) in Plectonema was determined by using cloned fragments from the Anabaena nif genes as probes in Southern hybridizations. Regions of Plectonema DNA were homologous to Anabaena nifH, nifD , and nifK genes, and the resulting pattern of hybridization was used to construct a map of nifH, D, K DNA isolated from Plectonema cells grown under non-nitrogen fixing conditions (combined nitrogen and O2 present). The nifH and nifD genes are on the same 3 kbp Hin dIII fragment, and nifK is on a 1 kbp Hin dIII fragment. All three nif fragments are adjacent to one another on a 12 kbp Cla I fragment.  相似文献   

20.
Four strains of the green sulfur bacterium Chlorobium were studied in respect to nitrogen nutrition and nitrogen fixation. All strains grew on ammonia, N2, or glutamine as sole nitrogen sources; certain strains also grew on other amino acids. Acetylene-reducing activity was detectable in all strains grown on N2 or on amino acids (except for glutamine). In N2 grown Chlorobium thiosulfatophilum strain 8327 1 mM ammonia served to switch-off nitrogenase activity, but the effect of ammonia was much less dramatic in glutamate or limiting ammonia grown cells. The glutamine synthetase inhibitor methionine sulfoximine inhibited ammonia switch-off in all but one strain. Cell extracts of glutamate grown strain 8327 reduced acetylene and required Mg2+ and dithionite, but not Mn2+, for activity. Partially purified preparations of Rhodospirillum rubrum nitrogenase reductase (iron protein) activating enzyme slightly stimulated acetylene reduction in extracts of strain 8327, but no evidence for an indigenous Chlorobium activating enzyme was obtained. The results suggest that certain Chlorobium strains are fairly versatile in their nitrogen nutrition and that at least in vivo, nitrogenase activity in green bacteria is controlled by ammonia in a fashion similar to that described in nonsulfur purple bacteria and in Chromatium.Non-common abbreviations MSX Methionine sulfoximine - MOPS 3-(N-morpholino) propane sulfonic acid This paper is dedicated to Professor Norbert Pfennig on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号