首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Absorption, magnetic circular dichroism (MCD), and electrospray mass spectral (ESI-MS) data are reported for the heme binding NEAr iron Transporter (NEAT) domains of IsdA and IsdC, two proteins involved in heme scavenging by Staphylococcus aureus. The mass spectrometry data show that the NEAT domains are globular in structure and efficiently bind a single heme molecule. In this work, the IsdA NEAT domain is referred to as NEAT-A, the IsdC NEAT domain is referred to as NEAT-C, heme-free NEAT-C is NEAT-A and NEAT-C are inaccessible to small anionic ligands. Reduction of the high-spin Fe(III) heme iron to 5-coordinate high-spin Fe(II) in NEAT-A results in coordination by histidine and opens access, allowing for CO axial ligation, yielding 6-coordinate low-spin Fe(II) heme. In contrast, reduction of the high-spin Fe(III) heme iron to 5-coordinate high-spin Fe(II) in NEAT-C results in loss of the heme from the binding site of the protein due to the absence of a proximal histidine. The absorption and MCD data for NEAT-A closely match those previously reported for the whole IsdA protein, providing evidence that heme binding is primarily a property of the NEAT domain.  相似文献   

3.
During infections the pathogen Staphylococcus aureus procures the essential nutrient iron from its host using iron-regulated surface determinant (Isd) proteins, which scavenge heme bound iron from host hemoproteins. Four Isd proteins are displayed in the cell wall, where they function as receptors for host proteins and heme. Each of the receptors contains one or more copies of a recently discovered domain called NEAT (NEAr Transporter) that has been shown to mediate protein binding. Here we report the three-dimensional solution structure of the NEAT domain from the IsdH/HarA protein, which is the hemoglobin receptor in the Isd system. This is the first structure of a NEAT domain and reveals that they adopt a beta sandwich fold that consists of two five-stranded antiparallel beta sheets. Although unrelated at the primary sequence level, our results indicate that NEAT domains belong to the immunoglobulin superfamily. Binding studies indicate that two IsdH/HarA NEAT domains bind a single molecule of methemoglobin, while the distantly related NEAT domain from the S. aureus IsdC protein binds only heme. A comparison of their primary sequences in light of the new structure is used to predict the hemoglobin and heme binding surfaces on NEAT domains.  相似文献   

4.
Integrin βν, one of two β subunits of Drosophila integrin, acts as a receptor in the phagocytosis of apoptotic cells. We here examined the involvement of this receptor in defense against infection by Staphylococcus aureus. Flies lacking integrin βν died earlier than control flies upon a septic but not oral infection with this bacterium. A loss of integrin βν reduced the phagocytosis of S. aureus and increased bacterial growth in flies. In contrast, the level of mRNA of an antimicrobial peptide produced upon infection was unchanged in integrin βν-lacking flies. The simultaneous loss of integrin βν and Draper, another receptor involved in the phagocytosis of S. aureus, brought about a further decrease in the level of phagocytosis and accelerated death of flies compared with the loss of either receptor alone. A strain of S. aureus lacking lipoteichoic acid, a cell wall component serving as a ligand for Draper, was susceptible to integrin βν-mediated phagocytosis. In contrast, a S. aureus mutant strain that produces small amounts of peptidoglycan was less efficiently phagocytosed by larval hemocytes, and a loss of integrin βν in hemocytes reduced a difference in the susceptibility to phagocytosis between parental and mutant strains. Furthermore, a series of experiments revealed the binding of integrin βν to peptidoglycan of S. aureus. Taken together, these results suggested that Draper and integrin βν cooperate in the phagocytic elimination of S. aureus by recognizing distinct cell wall components, and that this dual recognition system is necessary for the host organism to survive infection.  相似文献   

5.
The hydrophilic part of membrane proteins plays an important role in the formation of 3D crystals. The construction of fusion proteins using well crystallizing proteins as fusion partners is a possibility to increase the hydrophilic part of membrane proteins lacking large hydrophilic domains. These fusion proteins might be easier to crystallize. Two bifunctional fusion proteins containing the membrane-bound, lactose-specific enzyme IIC domain of the lactose transporter (IICB(lac)) from S. aureus as N-terminal fusion partner were constructed by gene fusion. The C-terminal fusion partners were S. aureus 6-P-beta-Galactosidase and GFP, respectively. Both proteins were overexpressed in E. coli, purified to homogeneity and kinetically characterized: In the presence of the components of the lactose phosphotransferase system of S. aureus, the hybrid proteins phosphorylated their substrates, indicating that the fusion partners are sufficiently flexibly linked to allow the interaction of the IIC(lac) domain with the IIB(lac) domain of the lactose transporter. The activity of the 6-P-beta-Galactosidase as well as the fluorescence of GFP were preserved in the fusion proteins. The Vmax values determined for the IIC domain in the fusion proteins were dramatically reduced compared with the values determined for the separate IIC(lac) domain and the complete lactose transporter (IICB(lac)). The Km values were only slightly increased indicating that the Vmax values are much more influenced by the fusion than the substrate affinities. The substrate affinity and the Vmax value determined for the GFP-fused IIC(lac) domain are higher than for the 6-P-beta-Galactosidase-fused IIC(lac). The results suggest that the fusion with GFP enables a better interaction with the IIB(lac) domain than the fusion with 6-P-beta-Galactosidase. Moreover, the GFP-fused IIC(lac) domain proved to be more stable than the 6-P-beta-Galactosidase fusion protein.  相似文献   

6.
The cell wall of gram-positive bacteria is a complex network of surface proteins, capsular polysaccharides and wall teichoic acids (WTA) covalently linked to Peptidoglycan (PG). The absence of WTA has been associated with a reduced pathogenicity of Staphylococcus aureus (S. aureus). Here, we assessed whether this was due to increased detection of PG, an important target of innate immune receptors. Antibiotic-mediated or genetic inhibition of WTA production in S. aureus led to increased binding of the non-lytic PG Recognition Protein-SA (PGRP-SA), and this was associated with a reduction in host susceptibility to infection. Moreover, PGRP-SD, another innate sensor required to control wild type S. aureus infection, became redundant. Our data imply that by using WTA to limit access of innate immune receptors to PG, under-detected bacteria are able to establish an infection and ultimately overwhelm the host. We propose that different PGRPs work in concert to counter this strategy.  相似文献   

7.
Carotenoid Formation by Staphylococcus aureus   总被引:2,自引:6,他引:2       下载免费PDF全文
The carotenoid pigments of Staphylococcus aureus U-71 were identified as phytoene; zeta-carotene; delta-carotene; phytofluenol; a phytofluenol-like carotenoid, rubixanthin; and three rubixanthin-like carotenoids after extraction, saponification, chromatographic separation, and determination of their absorption spectra. There was no evidence of carotenoid esters or glycoside ethers in the extract before saponification. During the aerobic growth cycle the total carotenoids increased from 45 to 1,000 nmoles per g (dry weight), with the greatest increases in the polar, hydroxylated carotenoids. During the anaerobic growth cycle, the total carotenoids increased from 20 nmoles per g (dry weight) to 80 nmoles per g (dry weight), and only traces of the polar carotenoids were formed. Light had no effect on carotenoid synthesis. About 0.14% of the mevalonate-2-(14)C added to the culture was incorporated into the carotenoids during each bacterial doubling. The total carotenoids did not lose radioactivity when grown in the absence of (14)C for 2.5 bacterial doublings. The total carotenoids did not lose radioactivity when grown in the absence of (14)C for 2.5 bacterial doublings. The incorporation and turnover of (14)C indicated the carotenes were sequentially desaturated and hydroxylated to form the polar carotenoids.  相似文献   

8.
Aminoacetone formation by Staphylococcus aureus   总被引:4,自引:3,他引:1       下载免费PDF全文
  相似文献   

9.
10.
Antibiotic resistance is increasingly seen as a serious problem that threatens public health and erodes our capacity to effectively combat disease. So-called non-iron metalloporhyrins have shown promising antibacterial properties against a number of pathogenic bacteria including Staphylococcus aureus. However, little is known about the molecular mechanism(s) of action of these compounds and in particular how they reach the interior of the bacterial cells. A popular hypothesis indicates that non-iron metalloporphyrins infiltrate into bacterial cells like a "Trojan horse" using heme transport systems. Iron-regulated surface determinant (Isd) is the best characterized heme transport system of S. aureus. Herein we studied the molecular mechanism by which the extracellular heme-receptor IsdH-NEAT3 of Isd recognizes antimicrobial metalloporphyrins. We found that potent antibacterial porphyrins Ga(III)-protoporphyrin IX (PPIX) and Mn(III)-PPIX closely mimicked the properties of the natural ligand heme, namely (i) stable binding to IsdH-NEAT3 with comparable affinities for the receptor, (ii) nearly undistinghuishable three-dimensional structure when complexed with IsdH-NEAT3, and (iii) similar transfer properties to a second receptor IsdA. On the contrary, weaker antibacterial porphyrins Mg(II)-PPIX, Zn(II)-PPIX, and Cu(II)-PPIX were not captured effectively by IsdH-NEAT3 under our experimental conditions and displayed lower affinities. Moreover, reduction of Fe(III)-PPIX to Fe(II)-PPIX with dithionite abrogated stable binding to receptor. These data revealed a clear connection between oxidation state of metal and effective attachment to IsdH-NEAT3. Also, the strong correlation between binding affinity and reported antimicrobial potency suggested that the Isd system may be used by these antibacterial compounds to gain access to the interior of the cells. We hope these results will increase our understanding of Isd system of S. aureus and highlight its biomedical potential to deliver new and more efficient antibacterial treatments.  相似文献   

11.
Staphylococcus aureus is a leading cause of hospital-acquired and often persistent infections. A key feature of pathogenic S. aureus is the expression of an array of extracellular matrix-binding proteins. In particular, the fibronectin-binding proteins FnBP-A and FnBP-B afford the pathogen the ability to connect to cellular integrins and to trigger internalization into host cells. Recent work has highlighted the role of host cell invasion in the pathogenesis of S. aureus, the structure-function relationship of FnBPs, and the host factors required to allow bacterial uptake. Understanding the invasive capacity of S. aureus should open up new avenues to control this microorganism in diverse disease settings.  相似文献   

12.
RNAIII from Staphylococcus lugdunensis (RNAIII-sl) in a Staphylococcus aureus agr mutant partially restored the Agr phenotype. A chimeric construct consisting of the 5′ end of RNAIII-sl and the 3′ end of RNAIII from S. aureus restored the Agr phenotype to a greater extent, suggesting the presence of independent regulatory domains.  相似文献   

13.
Domain V of Escherichia coli 23 S rRNA (residues 2023-2630) was replaced by that from Staphylococcus aureus, thereby introducing 132 changes in the rRNA sequence. The resulting ribosomal mutant was unable to support cell growth. The mutant was rescued, however, by restoring an interaction between domains IV and V (residues 1782 and 2586). Although the importance of this interaction, U/U in E. coli, C/C in S. aureus, is therefore demonstrated, it cannot be the only tertiary interaction important for ribosomal function as the rescued hybrid grew more slowly than the wild type. Additionally, although the single-site mutations U1782C and U2586C in E. coli are viable, the double mutant is lethal.  相似文献   

14.
Using affinity chromatography on IgG-Sepharose at pH 5.0, a new fragment capable of binding to IgG (domain E) was isolated from trypsin hydrolysate of protein A. Trypsinolysis of protein A was performed at low temperatures. Thus, the intact structure of protein A was found to include six domains, of which five interact with IgG.  相似文献   

15.
In many prokaryotes the biosynthesis of the amide aminoacyl-tRNAs, Gln-tRNAGln and Asn-tRNAAsn, proceeds by an indirect route in which mischarged Glu-tRNAGln or Asp-tRNAAsn is amidated to the correct aminoacyl-tRNA catalyzed by a tRNA-dependent amidotransferase (AdT). Two types of AdTs exist: bacteria, archaea and organelles possess heterotrimeric GatCAB, while heterodimeric GatDE occurs exclusively in archaea. Bacterial GatCAB and GatDE recognize the first base pair of the acceptor stem and the D-loop of their tRNA substrates, while archaeal GatCAB recognizes the tertiary core of the tRNA, but not the first base pair. Here, we present the crystal structure of the full-length Staphylococcus aureus GatCAB. Its GatB tail domain possesses a conserved Lys rich motif that is situated close to the variable loop in a GatCAB:tRNAGln docking model. This motif is also conserved in the tail domain of archaeal GatCAB, suggesting this basic region may recognize the tRNA variable loop to discriminate Asp-tRNAAsn from Asp-tRNAAsp in archaea. Furthermore, we identified a 310 turn in GatB that permits the bacterial GatCAB to distinguish a U1–A72 base pair from a G1–C72 pair; the absence of this element in archaeal GatCAB enables the latter enzyme to recognize aminoacyl-tRNAs with G1–C72 base pairs.  相似文献   

16.
Phagocyte recognition and clearance of bacteria play essential roles in the host response to infection. In an on-going forward genetic screen, we identify the Drosophila melanogaster scavenger receptor Croquemort as a receptor for Staphylococcus aureus, implicating for the first time the CD36 family as phagocytic receptors for bacteria. In transfection assays, the mammalian Croquemort paralogue CD36 confers binding and internalization of Gram-positive and, to a lesser extent, Gram-negative bacteria. By mutational analysis, we show that internalization of S. aureus and its component lipoteichoic acid requires the COOH-terminal cytoplasmic portion of CD36, specifically Y463 and C464, which activates Toll-like receptor (TLR) 2/6 signaling. Macrophages lacking CD36 demonstrate reduced internalization of S. aureus and its component lipoteichoic acid, accompanied by a marked defect in tumor necrosis factor-alpha and IL-12 production. As a result, Cd36-/- mice fail to efficiently clear S. aureus in vivo resulting in profound bacteraemia. Thus, response to S. aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain, which initiates TLR2/6 signaling.  相似文献   

17.
In humans, heme iron is the most abundant iron source, and bacterial pathogens such as Staphylococcus aureus acquire it for growth. IsdB of S. aureus acquires Fe(III)-protoporphyrin IX (heme) from hemoglobin for transfer to IsdC via IsdA. These three cell-wall-anchored Isd (iron-regulated surface determinant) proteins contain conserved NEAT (near iron transport) domains. The purpose of this work was to delineate the mechanism of heme binding and transfer between the NEAT domains of IsdA, IsdB, and IsdC using a combination of structural and spectroscopic studies. X-ray crystal structures of IsdA NEAT domain (IsdA-N1) variants reveal that removing the native heme-iron ligand Tyr166 is compensated for by iron coordination by His83 on the distal side and that no single mutation of distal loop residues is sufficient to perturb the IsdA-heme complex. Also, alternate heme-iron coordination was observed in structures of IsdA-N1 bound to reduced Fe(II)-protoporphyrin IX and Co(III)-protoporphyrin IX. The IsdA-N1 structural data were correlated with heme transfer kinetics from the NEAT domains of IsdB and IsdC. We demonstrated that the NEAT domains transfer heme at rates comparable to full-length proteins. The second-order rate constant for heme transfer from IsdA-N1 was modestly affected (< 2-fold) by the IsdA variants, excluding those at Tyr166. Substituting Tyr166 with Ala or Phe changed the reaction mechanism to one with two observable steps and decreased observed rates > 15-fold (to 100-fold excess IsdC). We propose a heme transfer model wherein NEAT domain complexes pass heme iron directly from an iron-coordinating Tyr of the donor protein to the homologous Tyr residues of the acceptor protein.  相似文献   

18.
19.
Addition of sublethal doses of d-cycloserine to growing cells of Staphylococcus aureus induces the rupture of the cell wall along an equatorial ring, thus allowing the liberation of protoplasts.  相似文献   

20.
The facultative pathogen Staphylococcus aureus colonizes the human anterior nares and causes infections of various organ systems. Which carbon, energy, and phosphate sources can be utilized by S. aureus in nutrient‐poor habitats has remained largely unknown. We describe that S. aureus secretes a glycerophosphodiesterase (glycerophosphodiester phosphodiesterase, EC 3.1.4.46), GlpQ, degrading the glycerophosphodiester (GPD) head groups of phospholipids such as human phosphatidylcholine (GroPC). Deletion of glpQ completely abolished the GroPC‐degrading activity in S. aureus culture supernatants. GroPC has been detected in human tissues and body fluids probably as a result of phospholipid remodelling and degradation. Notably, GroPC promoted S. aureus growth under carbon‐ and phosphate‐limiting conditions in a GlpQ‐dependent manner indicating that GlpQ permits S. aureus to utilize GPD‐derived glycerol‐3‐phosphate as a carbon and phosphate sources. Thus, S. aureus can use a broader spectrum of nutrients than previously thought which underscores its capacity to adapt to the highly variable and nutrient‐poor surroundings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号