首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
[目的]昆虫鞣化激素(Bursicon)是由神经系统分泌的一种异源二聚体神经肽,对昆虫表皮鞣化、翅展等功能具有调控作用.本研究旨在探究鞣化激素基因与家蚕Bombyx mori翅发育及对繁殖力相关基因的关系,明确其对翅展和繁殖力的调控作用.[方法]采用RNAi技术,分别注射Bursicon基因的dsRNA(dsBmBur...  相似文献   

3.
4.
In Drosophila melanogaster, the Sir2 gene and four Sir2-like genes have been found to be homologous to yeast SIR2 genes. To examine whether the fly Sir2, CG5216, and two Sir2-like genes, CG5085 and CG6284, affect life span, we suppressed their expression using RNAi. Decreased expression of the Sir2 and Sir2-like genes in all cells caused lethality during development. Suppression of the Sir2 in neurons and ubiquitous silencing of the Sir2-like genes shortened life spans. The effects were severer at 28 degrees C than at 25 degrees C. These results suggest that Sir2-like genes as well as Sir2 are involved in the regulation of life span in Drosophila.  相似文献   

5.
6.
Wnt信号通路是进化中高度保守的一条信号转导途径,在调控动物的胚胎轴向正常发育、胚胎分化、决定细胞极性、维持成体动态平衡等方面发挥重要作用. 该信号通路的异常激活还与肿瘤的发生密切相关. 本实验将体外人工合成的Wingless(Wg)/Wnt1基因dsRNA显微注射入赤拟谷盗晚期幼虫体内,研究Wingless/Wnt1蛋白在赤拟谷盗发育过程中发挥的作用. 实验结果显示,注射 Wingless(wg)/Wnt1基因dsRNA后,赤拟谷盗发育形成的蛹,翅膀宽度减小,翅间距明显增大,且羽化过程也受到严重影响. 此外,qPCR结果表明,赤拟谷盗Wingless(Wg)/Wnt1基因被沉默后,Cadherin-like 和 Smoothened (Smo)基因的表达显著上调,Armadillo-2基因略上调. 这些结果揭示,Wnt-1 信号通路和赤拟谷盗翅膀发育以及成虫羽化过程密切相关. 蛹翅宽减小,翅间距增大,可能是由于调控细胞粘连及细胞形态的Cadherin-like 和Armadillo-2基因的上调所引起.更重要的是,Smo基因的上调,表明了Wnt信号通路和Hedgehog信号通路在赤拟谷盗发育过程中有交互作用.  相似文献   

7.
Growth and patterning during Drosophila wing development are mediated by signaling from its dorso-ventral (D/V) organizer. Wingless is expressed in the D/V boundary and functions as a morphogen to activate target genes at a distance. Wingless pathway and thereby D/V signaling is negatively regulated by the homeotic gene Ultrabithorax (Ubx) to mediate haltere development. In an enhancer-trap screen to identify genes that show differential expression between wing and haltere discs, we identified CG32062, which codes for a RNA-binding protein. In wing discs, CG32062 is expressed only in non-D/V cells. CG32062 expression in non-D/V cells is dependent on Notch-mediated signaling from the D/V boundary. However, CG32062 expression is independent of Wingless function, thus providing evidence for a second long-range signaling mechanism of the D/V organizer. In haltere discs, CG32062 is negatively regulated by Ubx. The non-cell autonomous nature of Ubx-mediated repression of CG32062 expression suggests that the novel component of D/V signaling is also negatively regulated during haltere specification.  相似文献   

8.
9.
Park E  Suh H  Kim C  Park S  Dorsett D  Yim J 《IUBMB life》2007,59(12):781-790
A P element enhancer trap screen was conducted to identify genes involved in dorsal-ventral boundary formation in Drosophila. The son of Notch (son) gene was identified by the son(2205) enhancer trap insertion, which is a partial loss-of-function mutation. Based on son(2205) mutant phenotypes and genetic interactions with Notch and wingless mutations, we conclude that son participates in wing development, and functions in the Notch signaling pathway at the dorsal-ventral boundary in the wing. Notch signaling pathway components activate son enhancer trap expression in wing cells. son enhancer trap expression is regulated positively by wingless, and negatively by cut in boundary cells. Ectopic Son protein induces wingless and cut expression in wing discs. We hypothesize that there is positive feedback regulation of son by wingless, and negative regulation by cut at the dorsal-ventral boundary during wing development.  相似文献   

10.
Crinkled is associated with embryonic denticle formation and auditory organ development in Drosophila melanogaster. However, the functions of Crinkled have not been fully investigated. Additionally, the genes that participate in the Crinkled pathway are unknown. Phylogenetic analysis indicates that crinkled exhibits a one‐to‐one orthologous relationship in insects. In Tribolium castaneum, the crinkled gene is 6,498 bp in length and consists of six exons. Crinkled expression peaked during two phases in Tribolium: late embryonic and pupal stages. High levels of crinkled mRNA were detected in the fat body, head, epidermis, ovary, and accessory gland of late adults. Knockdown of crinkled using RNA interference (RNAi) severely affected wing morphogenesis in T. castaneum. We further showed that crinkled silencing reduced forked expression through wingless and shaven‐baby, and RNAi of forked phenocopied the effects of crinkled knockdown in T. castaneum. This study investigated the development role of crinkled in postembryonic stages and indicated that forked mediates the functions of crinkled during wing morphogenesis in T. castaneum.  相似文献   

11.
The gene zfh2 and its human homolog Atbf1 encode huge molecules with several homeo- and zinc finger domains. It has been reported that they play important roles in neural differentiation and promotion of apoptosis in several tissues of both humans and flies. In the Drosophila wing imaginal disc, Zfh2 is expressed in a dynamic pattern and previous results suggest that it is involved is proximal–distal patterning. In this report we go further in the analysis of the function of this gene in wing development, performing ectopic expression experiments and studying its effects in genes involved in wing development. Our results suggest that Zfh2 plays an important role controlling the expression of several wing genes and in the specification of those cellular properties that define the differences in cell proliferation between proximal and distal domains of the wing disc.  相似文献   

12.
New tools for gene manipulation in chicken embryos   总被引:1,自引:0,他引:1  
Genomics has changed the pace by which genes are analyzed. Rather than looking at genes one by one, gene expression today is studied at the genome level. Unfortunately, the data we get from microarray analysis do not give us any clues about the function of these genes. Functional analyses are still refractory to large-scale, high-throughput studies, particularly in vertebrates. With the development of in ovo RNAi as a tool for specific gene silencing, the chicken embryo has become an efficient in vivo system to study gene function during development. A major advantage of in ovo RNAi is the fact that the knowledge of a cDNA fragment of the gene of interest is sufficient to get loss-of-function phenotypes. Thus, this new approach is a valuable tool for functional genomics.  相似文献   

13.
14.
15.
16.
Ren N  Zhu C  Lee H  Adler PN 《Genetics》2005,171(2):625-638
The simple cellular composition and array of distally pointing hairs has made the Drosophila wing a favored system for studying planar polarity and the coordination of cellular and tissue level morphogenesis. We carried out a gene expression screen to identify candidate genes that functioned in wing and wing hair morphogenesis. Pupal wing RNA was isolated from tissue prior to, during, and after hair growth and used to probe Affymetrix Drosophila gene chips. We identified 435 genes whose expression changed at least fivefold during this period and 1335 whose expression changed at least twofold. As a functional validation we chose 10 genes where genetic reagents existed but where there was little or no evidence for a wing phenotype. New phenotypes were found for 9 of these genes, providing functional validation for the collection of identified genes. Among the phenotypes seen were a delay in hair initiation, defects in hair maturation, defects in cuticle formation and pigmentation, and abnormal wing hair polarity. The collection of identified genes should be a valuable data set for future studies on hair and bristle morphogenesis, cuticle synthesis, and planar polarity.  相似文献   

17.
In recent years RNA interference (RNAi) has become a useful genetic tool to downregulate candidate disease genes for which pharmaceutical inhibitors are not available. In combination with viral vectors to trigger RNAi in the mammalian body, it allows the localized and specific manipulation of the expression of single or multiple genes in vivo. The MAP kinases ERK1 and ERK2 are involved in the transduction of extracellular signals to nuclear effectors. A role for ERKs has been proposed in the adult brain in mediating neuronal functions, as for fear learning in the lateral amygdala. To study the role of ERK in anxiety disorders characterized by disturbed fear learning processes we developed Erk-specific RNAi tools and tested the efficacy of a viral Erk2 vector in the adult mouse brain. We found shRNAs that showed silencing of either both ERK1/2 or only ERK2. In particular, our analysis showed that an Erk2-specific shRNA reduced the activity of this gene at comparable efficiency both in vitro and in vivo. This reagent provides a useful tool to study the role of ERK2, for which small molecule inhibitors are not available, in the development of anxiety and other psychiatric disorders. Barbara Di Benedetto and Benedikt Wefers contributed equally to this work. An erratum to this article can be found at  相似文献   

18.
The dachsous (ds) gene encodes a member of the cadherin family involved in the non-canonical Wnt signaling pathway that controls the establishment of planar cell polarity (PCP) in Drosophila. ds is the only known cadherin gene in Drosophila with a restricted spatial pattern of expression in imaginal discs from early stages of larval development. In the wing disc, ds is first expressed distally, and later is restricted to the hinge and lateral regions of the notum. Flies homozygous for strong ds hypomorphic alleles display previously uncharacterized phenotypes consisting of a reduction of the hinge territory and an ectopic notum. These phenotypes resemble those caused by reduction of the canonical Wnt signal Wingless (Wg) during early wing disc development. An increase in Wg activity can rescue these phenotypes, indicating that Ds is required for efficient Wg signaling. This is further supported by genetic interactions between ds and several components of the Wg pathway in another developmental context. Ds and Wg show a complementary pattern of expression in early wing discs, suggesting that Ds acts in Wg-receiving cells. These results thus provide the first evidence for a more general role of Ds in Wnt signaling during imaginal development, not only affecting cell polarization but also modulating the response to Wg during the subdivision of the wing disc along its proximodistal (PD) axis.  相似文献   

19.
Phenocopies are developmental defects induced by environmental treatments during differentiation. Because of their resemblance to mutant phenotypes it has been suggested that phenocopies are due to environmental effects on the expression of specific genes during development. In this paper we describe the heat shock (40.8 degrees C) induction of a multiple wing hair phenocopy in the mutant heterozygote (mwh/+). The mwh phenocopy is only induced in heterozygotes of the recessive mutant during a short sensitive period which appears to be the time of expression of the multiple wing hair gene. We suggest that this phenocopy is due to failure of mwh gene expression and that phenocopy sensitive periods may be useful in identifying expression periods for particular genes during development. Furthermore we have been able to demonstrate that a 35 degrees C pretreatment will prevent the induction of the multiple wing hair phenocopy. A similar 35 degrees C pretreatment prevents induction of several different phenocopies by heat in wild-type flies (N. S. Petersen and H. K. Mitchell (1985). In "Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. X, Biochemistry." Pergamon, New York). This indicates a common molecular mechanism for both the induction and the prevention of heat-induced phenocopies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号