首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prevailing methods of measuring diet breadth of phytophagous insects are not consistent between studies and generally rely on counts of a variety of higher plant taxa (e.g. genera, families, orders). Results derived from them can be inconsistent if different taxonomic levels are used between studies. In any case, such indices do not include information from the whole branching structure of the host plant phylogeny, and do not address the fact that higher taxa are not necessarily phylogenetically equivalent. Here we present novel phylogeny-based methods which address these shortcomings. Although a previously proposed index (the Phylogenetic Diversity index) may be employed, it cannot be used to measure diets of strictly monophagous insects (i.e. those which utilise a single host species). We therefore introduce a modification of this index (the Root Phylogenetic Diversity index) which may be applied to all diets. In addition, we propose a Clade Dispersion index as a branch-length-independent measure of the degree to which hosts are scattered across the host phylogeny. We describe how these indices could be employed in studies of insect diet breadth and discuss potential problems which may be encountered in their use. Received: 16 November 1998 / Accepted: 10 February 1999  相似文献   

2.
Abstract This field study was designed to test whether the taxonomic group and geographic range size of a host plant species, usually found to influence insect species richness in other parts of the world, affected the number of gall species on Australian eucalypts. We assessed the local and regional species richness of gall-forming insects on five pairs of closely related eucalypt species. One pair belonged to the subgenus Corymbia, one to Monocalyptus, and three to different sections of Symphyomyrtus. Each eucalypt pair comprised a large and a small geographic range species. Species pairs were from coastal or inland regions of eastern Australia. The total number of gall species on eucalypt species with large geographic ranges was greater than on eucalypt species with small ranges, but only after the strong effect of eucalypt taxonomic grouping was taken into account. There was no relationship between the geographic range size of eucalypt species and the size of local assemblages of gall species, but the variation in insect species composition between local sites was higher on eucalypt species with large ranges than on those with small ranges. Thus the effect of host plant range size on insect species richness was due to greater differentiation between more widespread locations, rather than to greater local species richness. This study confirms the role of the geographic range size of a host plant in the determination of insect species richness and provides evidence for the importance of the taxon of a host plant.  相似文献   

3.
Abstract. 1. Data are presented on the species richness and faunal composition of herbivorous insects on birch seedlings, saplings and trees at one site in Northern England.
2. Species richness of insect herbivores in equal-sized samples from birch seedlings and trees was similar through most of the season.
3. Effects of plant architecture were confined to the first sampling date, when seedling faunas were species poor compared with trees – possibly due to safe overwintering sites on the extensive bark, twigs and buds of trees.
4. The faunal composition of birch seedlings, saplings and trees was also similar. Out of a total of 112 recorded species of herbivores, only one aphid species was confined to seedlings.
5. Similarly, no evidence for clear-cut vertical stratification of insects within trees was found.
6. Species turnover as host plants mature ('horizontal' stratification) and vertical stratification within trees add little to the high overall species richness of birch-feeding insects in Britain, contrary to the predictions of Lawton (1983).  相似文献   

4.
To determine the spatial dynamics of Neotropical lotic insect species, specimens were collected from 41 streams on the eastern and western flanks of the Andes Mountains in Ecuador. We examined the manner in which taxonomic richness and composition differed with elevation, latitude, and versant. Statistical analyses were limited to 5 families (Ephemeroptera: Baetidae, Leptohyphidae, Oligoneuriidae; Heteroptera: Naucoridae; Coleoptera: Elmidae), comprising 32 genera and 85 species, for which identifications or morphospecies assignments were reliable. Assessment of taxonomic diversity was based on the richness of genera and species at each site. In addition, each site was characterized by species richness within each of 4 families with more than 10 species. The effects of versant and transect on composition and structure were family‐specific. Mean site differences between versants in elmid richness at generic and specific levels depended on transect. Only baetid richness was affected by versant and transect in a consistent manner. Variation among sites in composition based on all genera and species was captured using multidimensional scaling (MDS). Subsequent MANOVAs based on scores from MDS axes revealed that differences between versants were much stronger in the southern transect, although transects differed from each other at specific and generic levels. A Jaccard's similarity matrix was computed for each family to reflect the spatial organization of taxonomic composition. Mesogeographic patterns of species composition for each of the four families were correlated (Mantel analysis) at both the regional level and at the level of the entire study area. At the regional level, the only pair of families to exhibit correlated patterns of species composition was elmids and naucorids in the southwestern region. The pattern of species composition for each family was correlated with the patterns for one or more other families at the level of the entire study area. Thus, spatial dynamics of species composition was similar for the families examined, suggesting that the Andes exert a consistent influence on species distributions within families, regardless of ordinal affiliation. At a local scale, however, the way in which taxonomic composition changed with latitude and versant was family‐specific. Mayflies, the most vagile of the taxa studied, had the highest percentage of species overlap between versants. Of three genera of Naucoridae collected, species of Ambrysus, of probable Mexican origin, were found only on the eastern versant, corroborating other evidence that the genus is recent in South America. Moreover, dispersion by Ambrysus across the Andes Mountains may not have occurred, as it has for Cryphocricos and Limnocoris, which are of probable South American origin.  相似文献   

5.
There is growing awareness of the importance of natural selection in driving genetic divergence and speciation, and several of the most apparent cases of this ecological speciation are provided by the existence of genetically distinct host forms in phytophagous insects. Such examples of host-associated differentiation (HAD) have become increasingly documented, and the implications of this phenomenon for the diversification of insects are becoming widely appreciated. However, instances of HAD remain rare relative to insect diversity and are sparsely distributed both ecologically and taxonomically. We sought to assess the frequency of HAD in a model herbivore community by examining genetic divergence in a variety of herbivores that feed on two closely related and broadly sympatric species of goldenrod (Solidago altissima and S. gigantea). Using mitochondrial DNA and allozyme data, in conjunction with previously published studies, we found that four of nine herbivores exhibited evidence of HAD, including possible host races or cryptic species. Using a range of reasonable substitution rate estimates for cytochrome oxidase I mitochondrial DNA, we found that HAD appears to have proceeded asynchronously across taxa. This pattern, along with the broadly sympatric distribution of host plants and the specialized life histories of the phytophagous insects, is consistent with sympatric divergence in some or all of these taxa. Although further behavioral and ecological study is needed, our survey of HAD in a community of herbivores indicates that ecological (perhaps sympatric) speciation may have been responsible for generating a significant fraction of the extant diversity of phytophagous insects.  相似文献   

6.
Arbuscular mycorrhizal fungi affect phytophagous insect specialism   总被引:3,自引:0,他引:3  
The majority of phytophagous insects eat very few plant species, yet the ecological and evolutionary forces that have driven such specialism are not entirely understood. The hypothesis that arbuscular mycorrhizal (AM) fungi can determine phytophagous insect specialism, through differential effects on insect growth, was tested using examples from the British flora. In the UK, plant families and species in the family Lamiaceae that are strongly mycorrhizal have higher proportions of specialist insects feeding on them than those that are weakly mycorrhizal. We suggest that AM fungi can affect the composition of insect assemblages on plants and are a hitherto unconsidered factor in the evolution of insect specialism.  相似文献   

7.
Efficient cellulolytic enzymes are needed to degrade recalcitrant plant biomass during ethanol purification and make lignocellulosic biofuels a cost-effective alternative to fossil fuels. Despite the large number of insect species that feed on lignocellulosic material, limited availability of quantitative studies comparing cellulase activity among insect taxa constrains identification of candidate species for more targeted identification of effective cellulolytic systems. We describe quantitative determinations of the cellulolytic activity in gut or head-derived fluids from 68 phytophagous or xylophagous insect species belonging to eight different taxonomic orders. Enzymatic activity was determined for two different substrates, carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC), approximating endo-β-1,4-glucanase and complete cellulolytic activity, respectively. Highest CMC gut fluid activities were found in Dictyoptera, Coleoptera, Isoptera, and Orthoptera, while highest MCC gut fluid activities were found in Coleoptera, Hymenoptera, Lepidoptera, and Orthoptera. In most cases, gut fluid activities were greater with CMC compared to MCC substrate, except in Diptera, Hymenoptera, and Lepidoptera. In contrast, cellulolytic activity levels in most head fluids were greater on the MCC substrate. Our data suggests that a phylogenetic relationship may exist for the origin of cellulolytic enzymes in insects, and that cellulase activity levels correlate with taxonomic classification, probably reflecting differences in plant host or feeding strategies.  相似文献   

8.
Aim Species richness of insect herbivores feeding on exotic plants increases with abundance as well as range size of the host in the area of introduction. The formation of these herbivore assemblages requires a certain amount of time, and the richness of insect faunas should also increase with the length of time an exotic plant has been present in the introduced range. Location Central Europe. Methods We analysed the variation in species richness of leaf‐chewing Lepidoptera larvae and sap‐sucking Auchenorrhyncha (Hemiptera) associated with 103 exotic woody plant species in Germany in relation to time since introduction, range size, growth form (trees versus shrubs), biogeographical origin (distance from Central Europe) and taxonomic isolation of the host plant (presence or absence of a native congener in the introduced area). Results Using simple correlation analyses we found for Lepidoptera and Auchenorrhyncha that species richness increased with time since introduction of the host plant. For the Lepidoptera the increase of species richness with time since introduction remained significant even after removing the effects of all other independent variables. Main conclusions Our results provide some evidence that assemblages of insects on exotic plants do not reach saturation within a time scale of few hundred years. This contrasts with previous findings for crop plants.  相似文献   

9.
Abstract We investigated the relationship between abundance and body size (body mass) of 162 insect herbivore species on the host plant Acacia falcata along its entire coastal latitudinal distribution (eastern Australia), spanning a gradient in mean annual temperature of 4.3°C. We extend previous research by assessing these relationships at different spatial scales (latitudes pooled, among latitudes and within latitudes) and at different taxonomic levels (insect phytophages pooled, phytophagous Coleoptera and Hemiptera, and five component suborders/superfamilies). Insect species were collected from two orders (Hemiptera and Coleoptera) and five component suborders/superfamilies. There were no consistent trends in the relationships (linear or polygonal/hump‐shaped) between abundance and body mass when latitudes were pooled, among latitudes, or when phytophagous insect species were separated into their component suborder/superfamily groups. The reason for the lack of consistent trends might be due to the insect herbivores not fully exploiting their host plant and the relative absence of competition among herbivore species for food resources. This is further assessed in relation to the lack of a consistent pattern in species richness of Coleoptera and Hemiptera herbivores from the same dataset and rates of chewing and sap‐sucking herbivory along the same latitudinal gradient. Future studies of abundance–body size relationships are discussed in relation to sampling across environmental gradients and accounting for the influence of host plant identity and insect phylogeny.  相似文献   

10.
The evolutionary history of phytophagous insects and mites and of their food-plants is traced in the conservative preferences of modern-day insects for plants. Based on UK data in the Phytophagous Insects Data Bank, a correspondence analysis displays 182 insect families and 117 plant families in a bi-variate plot. The overall pattern suggests the expansion of diversity of insects and host plants from Gymnosperms to Dicots. Plots for phytophagous insect orders and major plant clades are described, with families provisionally ranked as evolutionarily basal, intermediate or advanced. There are blurred patterns of evolutionary advancement from basal insect families with more species on conifers and on ferns and Eurosid I trees. Intermediate families are commoner on Malpighiales and Fabales, and advanced insects more frequent on later evolved euasterids II (Asterales and Lamiales), Caryophyllales and Gramineae. Basal Hymenoptera have associations with conifers, basal Lepidoptera to Eurosid I trees, and Diptera are mainly advanced families on commelinids (grasses) and Asteraceae. Blurred traces of similar phylogenetic sequences are described for subfamilies within eight example insect families. Basal families and clades tend to have fewer species than derived advanced clades. Insect communities on plants should be seen in the light of this linked past evolutionary background.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 78 , 51–83.  相似文献   

11.
Interactions between phytophagous insects and their Opuntia hosts   总被引:3,自引:0,他引:3  
Abstract.
  • 1 The cactophagous insect community on opuntias is analysed to show the number of insect species in different taxa. An extension of this analysis gives the average species complement on large and small opuntias.
  • 2 A highly significant positive correlation is found between the total number of phytophagous insect species on individual Opuntia species and a measure of the overall ‘architecture’ of their host plants.
  • 3 The specificity of the phytophagous insects on opuntias is briefly considered and the community as a whole analysed by guilds. The co-evolution of the Opuntia-feeding insects and their hosts has culminated in a community of specialist insects to the exclusion of nearly all generalist phytophages.
  • 4 The life history strategies of the Opuntia-feeding insects are reviewed. Common to all developmental stages are morphological and behavioural adaptations that reduce the risk of attack by natural enemies. This is clearly the consequence of living on structurally simple host plants where there is little place to hide.
  • 5 The possible influence of insect herbivores on Opuntia evolution is discussed.
  • 6 An understanding of the interactions between the phytophagous insect community and opuntias has clear implications for the biological control of alien Opuntia weeds.
  相似文献   

12.
According to the escalation–radiation model of co-evolution, insect herbivores that acquire the ability to circumvent a plant defence enter a new adaptive zone and increase in species. How herbivore counter-adaptations to plant defences might lead to speciation is poorly understood. Studies of nymphalid butterflies suggest that the evolution of a broadened host range may be a critical step. This paper examines if leaf-feeding insects capable of deactivating defensive plant canals with canal cutting often have broad host ranges. A total of 94 species of canal-cutting insects were identified from the literature, including eight new canal cutters described in this paper. Only 27% of canal cutters with known host ranges are generalists that feed on plants in multiple families. The proportion of generalist canal cutters is similar or lower than estimates of generalists among phytophagous insects overall. Only five species, at most, of the canal-cutting generalists feed exclusively on plants with secretory canals. The paucity of generalists can be attributed in part to the considerable taxonomic distance separating canal-bearing plant families and to their corresponding chemical distinctiveness. The dependence of many canal-cutting species on host chemicals for defence would also favour specialization.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 715–731.  相似文献   

13.
1. The megadiverse herbivores and their host plants are a major component of biodiversity, and their interactions have been hypothesised to drive the diversification of both. 2. If plant diversity influences the diversity of insects, there is an expectation that insect species richness will be strongly correlated with host‐plant species richness. This should be observable at two levels (i) more diverse host‐plant groups should harbour more species of insects, and (ii) the species richness of a group of insects should correlate with the richness of the host groups it uses. However, such a correlation is also consistent with a hypothesis of random host use, in which insects encounter and use hosts in proportion to the diversity of host plants. Neither of these expectations has been widely tested. 3. These expectations were tested using data from a species‐rich group of insects – the Coccidae (Hemiptera). 4. Significant positive correlations were found between the species richness of coccid clades (genera) and the species richness of the host‐plant family or families upon which the clades occur. On a global scale, more closely related plant families have more similar communities of coccid genera but the correlation is weak. 5. Random host use could not be rejected for many coccids but randomisation tests and similarity of coccid communities on closely related plant families show that there is non‐random host use in some taxa. Overall, our results support the idea that plant diversity is a driver of species richness of herbivorous insects, probably via escape‐and‐radiate or oscillation‐type processes.  相似文献   

14.
1. Ecological stoichiometry has been used to better understand dynamics in consumer growth and the role of consumer‐recycled nutrients because it focuses on more than one element. Most research has focused on pelagic rather than benthic consumers. Variation in elemental composition among benthic consumer taxa would suggest that taxa differ in their susceptibility to nutrient limitation or in their role in recycling nutrients. 2. We collected benthic macroinvertebrates from streams in two regions (Indiana–Michigan and Wisconsin, U.S.A.) to examine taxonomic and regional variation in benthic macroinvertebrate body carbon (C), nitrogen (N), and phosphorus (P) concentrations and ratios. 3. Elemental composition varied little within taxa common to both regions. In contrast, elemental composition differed greatly among taxa and appeared to be related to phylogeny. The elemental composition of macroinvertebrates clustered into three distinct groups: insects, mollusks, and crustaceans. To a lesser extent, insects and mollusks also differed in elemental composition among genera. 4. Functional feeding groups (FFGs) differed in elemental composition, with predators having a higher N content than other groups. Substantial elemental imbalances between C and N were found between most primary consumers and their likely food sources, and the magnitude of the imbalance depended in part on the FFG. 5. Our results support an assumption of most ecological stoichiometry models that, within a species, the elemental composition of aquatic invertebrates is relatively constant. Variation in elemental composition among taxa at various higher taxonomic levels suggests that susceptibility of stream invertebrates to nutrient limitation and their role in nutrient cycling will strongly depend on phylogeny.  相似文献   

15.
Drift collections of pupal exuviae from 2nd–5th order streams of the Guanacaste National Park in Northwest Costa Rica and from 3rd–6th order streams of the West African countries of Guinea, Ivory Coast, Sierra Leone and Togo have revealed high community (alpha) and regional (beta) levels of species diversity.Samples have been processed from 13 streams of the Guanacaste N. P. including two, Quebrada Las Yeguitas (2 stations) and Rio Tempisquito, for which year-long series were available. A total of 266 species level taxa have been recognized from these streams and are distributed over the higher taxa as follows: Chironomini-73, Pseudochironomini-4, Tanytarsini-55, Orthocladiinae-92, Macropelopiini-5 and Pentaneurini-37. The two sites on the Q. Las Yeguitas have a combined total of 216 species, and together with R. Tempisquito a total of 238 species. The single richest sample (Q. Las Yeguitas, Orosi station, 1990-Jan.-9) contained 102 species.Samples have been processed from 31 West African Streams which, for the most part, are represented by single samples. A total of 299 species level taxa have been recognized from these streams which are distributed over the higher taxa as follows: Chrinomini-139, Tanytarsini-62, Orthocladiinae-56, Coelotanypodini-2, Macropelopiini-3 and Pentaneurini-37. The single largest collection, containing 175 species, was taken from the Upper Dion River, a 6th order stream in the Upper Niger basin of the Guinean highlands.The compositions of the two regional faunas show similarities in two general features: they are both taxonomically narrow (few subfamilies and tribes) and taxonomically deep (many closely related genera, often with a relatively large number of closely related species). The high alpha diversity values require an ecological explanation, most probably along the axes of resources (time, space and food). The high regional diversities require an historical explanation. It is proposed that great climatic variation during the Pleistocene coupled with great geographic alteration of the connection between North and South America may be responsible for both the taxonomic narrowness and depth seen in the chironomid faunas of West Africa and Costa Rica.  相似文献   

16.
The taxonomic diversity dynamics of pterygote insects in the Permian and Triassic at the family/age level are considered. Different metrics of taxonomic diversity are compared. Biogeographic and taphonomic aspects of changes in the composition of insect faunas in the Permian and about the P-T transition are discussed. Some changes in the Permian insect faunas are of a biogeographic nature and do not indicate global changes in diversity. Insects with aquatic immatures were rather common in the Permian and Early Triassic, but these immatures are well represented in only few localities.  相似文献   

17.
Current methods for measuring similarity among phytophagous insect communities fail to consider the phylogenetic relationship between host plants. We analysed this relation based on 3580 host observations of 1174 beetle species associated with 100 species of angiosperms in two different forest types in Panama. We quantified the significance of genetic distance as well as taxonomic rank among angiosperms in relation to species overlap in beetle assemblages. A logarithmic model describing the decrease in beetle species similarity between host-plant species of increasing phylogenetic distance explains 35% of the variation. Applied to taxonomic rank categories the results imply that except for the ancient branching of monocots from dicots, only adaptive radiations of plants on the family and genus level are important for host utilization among phytophagous beetles. These findings enable improvements in estimating host specificity and species richness through correction for phylogenetic relatedness between hosts and consideration of the host-specific fauna associated with monocots.  相似文献   

18.
Almost 40 years ago, Terry L. Erwin published a seemingly audacious proposition: There may be as many as 30 million species of insects in the world. Here, we translate Erwin's verbal argument into a diversity-ratio model—the Erwin Equation of Biodiversity—and discuss how it has inspired other biodiversity estimates. We categorize, describe the assumptions for, and summarize the most commonly used methods for calculating estimates of global biodiversity. Subsequent diversity-ratio extrapolations have incorporated parameters representing empirical insect specialization ratios, and how insect specialization changes at different spatial scales. Other approaches include macroecological diversity models and diversity curves. For many insect groups with poorly known taxonomies, diversity estimates are based on the opinions of taxonomic experts. We illustrate our current understanding of insect diversity by focusing on the six most speciose insect orders worldwide. For each order, we compiled estimates of the (a) maximum estimated number of species, (b) minimum estimated number of species, and (c) number of currently described species. By integrating these approaches and considering new information, we believe an estimate of 5.5 million species of insects in the world is much too low. New molecular methodologies (e.g., metabarcoding and NGS studies) are revealing daunting numbers of cryptic and previously undescribed species, at the same time increasing our precision but also uncertainty about present estimates. Not until technologies advance and sampling become more comprehensive, especially of tropical biotas, will we be able to make robust estimates of the total number of insect species on Earth.  相似文献   

19.
We explored the relationships between features of host species and their environment, and the diversity, composition and structure of parasite faunas and communities using a large taxonomically consistent dataset of host-parasite associations and host-prey associations, and original environmental and host trait data (diet, trophic level, population density and habitat depth vagility) for the most abundant demersal fish species off the Catalonian coast of the Western Mediterranean. Altogether 98 species/taxa belonging to seven major parasite groups were recovered in 683 fish belonging to 10 species from seven families and four orders. Our analyses revealed that (i) the parasite fauna of the region is rich and dominated by digeneans; (ii) the host parasite faunas and communities exhibited wide variations in richness, abundance and similarity due to a strong phylogenetic component; (iii) the levels of host sharing were low and involved host generalists and larval parasites; (iv) the multivariate similarity pattern of prey samples showed significant associations with hosts and host trophic guilds; (v) prey compositional similarity was not associated with the similarity of trophically transmitted parasite assemblages; and (vi) phylogeny and fish autecological traits were the best predictors of parasite community metrics in the host-parasite system studied.  相似文献   

20.
Phytophagous insects have a close relationship with their host plants. For this reason, their interactions can lead to important changes in insect population dynamics and evolutionary trajectories. Next generation sequencing (NGS) has provided an opportunity to analyze omics data on a large scale, facilitating the change from a classical genetics approach to a more holistic understanding of the underlying molecular mechanisms of host plant use by insects. Most studies have been carried out on model species in Holarctic and temperate zones. In tropical zones, however, the effects of use of various host plants on evolutionary insect history is less understood. In the current review, we describe how omics methodologies help us to understand phytophagous insect–host plant interactions from an evolutionary perspective, using as example the Neotropical phytophagous insect West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae), an economically important fruit crop pest in the Americas. Anastrepha obliqua could adopt a generalist or a specialist lifestyle. We first review the adaptive molecular mechanisms of phytophagous insects to host plants, and then describe the main tools to study phytophagous insect–host plant interactions in the era of omics sciences. The omics approaches will advance the understanding of insect molecular mechanisms and their influence on diversification and evolution. Finally, we discuss the importance of a multidisciplinary approach that integrates the use of omics tools and other, more classical methodologies in evolutionary studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号