首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 529 毫秒
1.
Besides their role in fighting viral infection and tumor resistance, recent studies have shown that NK cells also participate in the immune response against other infectious diseases. The aim of this study was to characterize the possible role of NK cells in the immune response against Paracoccidioides brasiliensis. Purified NK cells from paracoccidioidomycosis patients and healthy individuals were incubated with P. brasiliensis yeast cells or P. brasiliensis-infected monocytes, with or without the addition of recombinant IL-15. We found that NK cells from paracoccidioidomycosis patients exhibit a lower cytotoxic response compared with healthy individuals. NK cells are able directly to recognize and kill P. brasiliensis yeast cells, and this activity seems to be granule-dependent but perforin-independent, whereas the cytotoxicity against P. brasiliensis-infected monocytes is perforin-dependent. These results indicate that NK cells participate actively in the immune response against the P. brasiliensis infection either by directly destroying yeast cells or by recognizing and killing infected cells. Granulysin is the possible mediator of the cytotoxic effect, as the reduced cytotoxic activity against the yeast cells detected in patients with paracoccidioidomycosis is accompanied by a significantly lower frequency of CD56(+)granulysin(+) cells compared with that in healthy controls. Furthermore, we show that NK cells released granulysin in cultures after being stimulated by P. brasiliensis, and this molecule is able to kill the yeast cells in a dose-dependent manner. Another important finding is that stimulated NK cells are able to produce proinflammatory cytokines (IFN-γ and TNF-α) supporting their immunomodulatory role in the infection.  相似文献   

2.

Background

Granulysin produced by cytolytic T cells directly contributes to immune defense against tuberculosis (TB). We investigated granulysin as a candidate immune marker for childhood and adolescent TB.

Methods

Peripheral blood mononuclear cells (PBMC) from children and adolescents (1–17 years) with active TB, latent TB infection (LTBI), nontuberculous mycobacteria (NTM) infection and from uninfected controls were isolated and restimulated in a 7-day restimulation assay. Intracellular staining was then performed to analyze antigen-specific induction of activation markers and cytotoxic proteins, notably, granulysin in CD4+ CD45RO+ memory T cells.

Results

CD4+ CD45RO+ T cells co-expressing granulysin with specificity for Mycobacterium tuberculosis (Mtb) were present in high frequency in TB-experienced children and adolescents. Proliferating memory T cells (CFSElowCD4+CD45RO+) were identified as main source of granulysin and these cells expressed both central and effector memory phenotype. PBMC from study participants after TB drug therapy revealed that granulysin-expressing CD4+ T cells are long-lived, and express several activation and cytotoxicity markers with a proportion of cells being interferon-gamma-positive. In addition, granulysin-expressing T cell lines showed cytolytic activity against Mtb-infected target cells.

Conclusions

Our data suggest granulysin expression by CD4+ memory T cells as candidate immune marker for TB infection, notably, in childhood and adolescence.  相似文献   

3.
Granulysin has been identified as an effector molecule co-localized with perforin in the cytotoxic granules of cytotoxic T lymphocytes and natural killer (NK) cells, and has been reported to kill intracellular pathogens in infected cells in the presence of perforin and to induce a cytotoxic effect against tumor cells. The aim of the present study was to elucidate whether intracellular expression of granulysin and perforin by NK cells might be associated with progression of cancer. Flow cytometric analysis demonstrated high levels of perforin and granulysin expression by CD3(-) CD16(+) cells in healthy controls. In contrast, cancer patients exhibited significantly decreased levels of granulysin expression ( P<0.005), despite having equally high levels of perforin expression in comparison with healthy controls. The tumor-free patients expressed granulysin at levels similar to healthy controls, while the progressive tumor-bearing patients expressed remarkably lower levels of granulysin compared to healthy controls ( P<0.0001). Similarly, patients with an advanced performance status had significantly fewer granulysin-positive NK cells than healthy controls. Meanwhile, a considerable number of the tumor-bearing patients showed a decrease in the number of circulating NK cells, and a correlation between impaired granulysin expression and reduced circulating NK cells was observed. These findings suggest that the tumor-bearing patients with impaired granulysin expression were in an immunosuppressive state. In conclusion, impaired expression of granulysin by NK cells correlates with progression of cancer, and determination of granulysin expression might prove informative for assessing the immunological condition of cancer patients.  相似文献   

4.
Granulysin, a T cell product, kills bacteria by altering membrane permeability   总被引:12,自引:0,他引:12  
Granulysin, a protein located in the acidic granules of human NK cells and cytotoxic T cells, has antimicrobial activity against a broad spectrum of microbial pathogens. A predicted model generated from the nuclear magnetic resonance structure of a related protein, NK lysin, suggested that granulysin contains a four alpha helical bundle motif, with the alpha helices enriched for positively charged amino acids, including arginine and lysine residues. Denaturation of the polypeptide reduced the alpha helical content from 49 to 18% resulted in complete inhibition of antimicrobial activity. Chemical modification of the arginine, but not the lysine, residues also blocked the antimicrobial activity and interfered with the ability of granulysin to adhere to Escherichia coli and Mycobacterium tuberculosis. Granulysin increased the permeability of bacterial membranes, as judged by its ability to allow access of cytosolic ss-galactosidase to its impermeant substrate. By electron microscopy, granulysin triggered fluid accumulation in the periplasm of M. tuberculosis, consistent with osmotic perturbation. These data suggest that the ability of granulysin to kill microbial pathogens is dependent on direct interaction with the microbial cell wall and/or membrane, leading to increased permeability and lysis.  相似文献   

5.
Granulysin is located in the acidic granules of cytotoxic T cells. Although the purified protein has antimicrobial activity against a broad spectrum of microbial pathogens, direct evidence for granulysin-mediated cytotoxicity has heretofore been lacking. Studies were performed to examine the regulation and activity of granulysin expressed by CD8 T cells using Cryptococcus neoformans, which is one of the most common opportunistic pathogens of AIDS patients. IL-15-activated CD8 T cells acquired anticryptococcal activity, which correlated with the up-regulation of granulysin. When granules containing granulysin were depleted using SrCl(2,) or when the gene was silenced using 21-nt small interfering RNA duplexes, the antifungal effect of CD8 T cells was abrogated. Concanamycin A and EGTA did not affect the antifungal effect, suggesting that the activity of granulysin was perforin independent. Following stimulation by the C. neoformans mitogen, CD8 T cells expressed granulysin and acquired antifungal activity. This activity required CD4 T cells and was dependent upon accessory cells. Furthermore, IL-15 was both necessary and sufficient for granulysin up-regulation in CD8 T cells. These observations are most consistent with a mechanism whereby C. neoformans mitogen is presented to CD4 T cells, which in turn activate accessory cells. The resultant IL-15 activates CD8 T cells to express granulysin, which is responsible for antifungal activity.  相似文献   

6.
Granulysin is a cytolytic effector molecule used by lymphocytes to kill tumor and microbial cells. Regulation of granulysin production is complex. A significant delay (5 days) following stimulation of CD4(+) T cells with IL-2 occurs before granulysin is produced. Unfortunately, the mechanisms responsible for this delay are unknown. We have recently demonstrated that granulysin-mediated killing of Cryptococcus neoformans by CD4(+) T cells is defective during HIV infection. This is because CD4(+) T cells from HIV-infected patients fail to produce granulysin in response to IL-2 activation. The present studies examined the mechanism of delayed production of granulysin and the mechanism of the defect in HIV patients. We demonstrate that IL-2 initially requires both STAT5 and PI3K activation to increase expression of IL-2Rbeta, produce granulysin, and kill C. neoformans. The increased expression of IL-2Rbeta precedes granulysin, and preventing the increased expression of IL-2Rbeta using small interfering RNA knockdown abrogates granulysin expression. Moreover, following the increased expression of IL-2Rbeta, blocking subsequent signaling by IL-2 using IL-2Rbeta-specific blocking Abs abrogates expression of granulysin. Finally, CD4(+) T cells from HIV-infected patients, who are defective in both STAT5 and PI3K signaling, fail to express IL-2Rbeta and fail to produce granulysin. These results suggest that IL-2 signals via PI3K and STAT5 to increase expression of IL-2Rbeta, which in turn is required for production of granulysin. These results provide a mechanism to explain the "late" production of granulysin during normal T cell responses, as well as for defective granulysin production by CD4(+) T cells in HIV-infected patients.  相似文献   

7.
Granulysin is a cytolytic, proinflammatory protein produced by human cytolytic T-lymphocytes and natural killer cells. Granulysin has two stable isoforms with molecular weight of 9 and 15 kDa; the 9-kDa form is a result of proteolytic maturation of the 15-kDa precursor. Recombinant 9-kDa granulysin exhibits cytolytic activity against a variety of microbes, such as bacteria, parasites, fungi, yeast and a variety of tumor cell lines. However, it is difficult to produce granulysin in large quantities by traditional methods. In this study, we developed a simple and robust fed-batch fermentation process for production and purification of recombinant 9- and 15-kDa granulysin using Pichia pastoris in a basal salt medium at high cell density. The granulysin yield reaches at least 100 mg/l in fermentation, and over 95 % purity was achieved with common His-select affinity and ion exchange chromatography. Functional analysis revealed that the yeast-expressed granulysin displayed dose-dependent target cytotoxicity. These results suggest that fermentation in P. pastoris provides a sound strategy for large-scale recombinant granulysin production that may be used in clinical applications and basic research.  相似文献   

8.
Granulysin and interferon-gamma (IFN-γ) have broad antimicrobial activity which controls Mycobacterium tuberculosis (M. tuberculosis) infection. Circulating granulysin and IFN-γ concentrations were measured and correlated with clinical disease in Thai patients with newly diagnosed, relapsed and chronic tuberculosis (TB). Compared to controls, patients with newly diagnosed, relapsed and chronic TB had lower circulating granulysin concentrations, these differences being significant only in newly diagnosed and relapsed TB (P < 0.001 and 0.004, respectively). Granulysin concentrations in patients with newly diagnosed and relapsed TB were significantly lower than in those with chronic TB (P= 0.003 and P= 0.022, respectively). In contrast, significantly higher circulating IFN-γ concentrations were found in patients with newly diagnosed and relapsed TB compared to controls (P < 0.001). The IFN-γ concentrations in newly diagnosed and relapsed patients were not significantly different from those of patients with chronic TB. However, in vitro stimulation of peripheral blood mononuclear cells (PBMCs) from patients with newly diagnosed, relapsed and chronic TB with purified protein derivative (PPD) or heat killed M. tuberculosis (H37Ra) enhanced production of granulysin by PBMCs. In vitro, stimulation of PBMCs of newly diagnosed TB patients with PPD produced greater amounts of IFN-γ than did controls, while those stimulated with H37Ra did not. The results demonstrate that patients with active pulmonary TB have low circulating granulysin but high IFN-γ concentrations, suggesting possible roles in host defense against M. tuberculosis for these agents.  相似文献   

9.
A distinct pathway of cell-mediated apoptosis initiated by granulysin.   总被引:14,自引:0,他引:14  
Granulysin is an antimicrobial and tumoricidal molecule expressed in granules of CTL and NK cells. In this study, we show that granulysin damages cell membranes based upon negative charge, disrupts the transmembrane potential (Deltapsi) in mitochondria, and causes release of cytochrome c. Granulysin-induced apoptosis is blocked in cells overexpressing Bcl-2. Despite the release of cytochrome c, procaspase 9 is not processed. Nevertheless, activation of caspase 3 is observed in granulysin-treated cells, suggesting that granulysin activates a novel pathway of CTL- and NK cell-mediated death distinct from granzyme- and death receptor-induced apoptosis.  相似文献   

10.
Characterization of bovine homologues of granulysin and NK-lysin   总被引:6,自引:0,他引:6  
Granulysin and NK-lysin are antimicrobial proteins found in the granules of human and swine cytotoxic lymphocytes. A murine counterpart to granulysin has not been identified to date, indicating the importance of additional models to fully characterize the role of granulysin-like molecules in the immune response to infectious disease. Two partial nucleotide sequences corresponding to the complete functional domain of granulysin and NK-lysin were amplified from bovine PBMC mRNA. Following stimulation with phorbol ester and calcium ionophore, expression of the bovine gene was detected in CD3(+) T cells, CD4(+) T cells, CD8(+) T cells, WC1(+) gammadelta T cells, and PBMC depleted of CD3(+) T cells, but was absent in CD21(+) cells and CD14(+) cells. Intracellular flow cytometry and immunoblotting confirmed the presence of protein corresponding to the bovine granulysin homologue in activated T lymphocytes and PBMC. Synthetic human, bovine, and swine peptides corresponding to the C terminus of helix 2 through helix 3 region of granulysin displayed potent antimicrobial activity against Escherichia coli, Salmonella enteritidis, Staphylococcus aureus, and Mycobacterium bovis bacillus Calmette-Guérin. Human and bovine peptides corresponding to helix 2 displayed antimycobacterial activity against M. bovis bacillus Calmette-Guérin. Expression of the bovine gene was detected in laser microscopy-dissected lymph node lesions from an M. bovis-infected animal. The identification of a biologically active bovine homologue to granulysin demonstrates the potential of the bovine model in characterizing the role of granulysin in the immune response to a variety of infectious agents.  相似文献   

11.
Prior studies by our laboratory demonstrated that a single injection of morphine produces dose-dependent, naltrexone-reversible, suppressive effects in assays of mitogen-stimulated lymphocyte proliferation and natural killer (NK) cell cytotoxicity in the spleen. The present study used flow cytometry to assess directly whether acute morphine treatment produces these immune alterations by altering the leukocyte composition of the spleen. In agreement with our previous findings, morphine suppressed the concanavalin A-stimulated proliferation of T cells, lipopolysaccharide-stimulated proliferation of B cells, and NK cell cytotoxicity in the spleen. However, the same morphine treatment protocol did not alter the total number of splenic leukocytes, the percentage of live splenic leukocytes (as assessed by forward-scatter versus side-scatter histograms), or the relative number of CD4(+)CD3(+) T cells, CD8(+)CD3(+) T cells, CD45RA/B(+) B cells, NKR-P1A(hi)CD3(-) NK cells, NKR-P1A(lo)CD3(+) T cells, CD11b/c(+)HIS48(-) monocytes/macrophages, or CD11b/c(+)HIS48(+) granulocytes in the spleen. These findings indicate that the effects of a single sc dose of morphine on functional measures of immune status in the spleen do not result from a redistribution of splenic leukocytes; instead, morphine's effects likely result from direct alterations in leukocyte activities.  相似文献   

12.
Reciprocal interactions between NK cells and dendritic cells have been shown to influence activation of NK cells, maturation, or lysis of dendritic cells and subsequent adaptive immune responses. However, little is known about the crosstalk between monocytes and NK cells and the receptors involved in this interaction. We report in this study that human monocytes, upon TLR triggering, up-regulate MHC class I-Related Chain (MIC) A, but not other ligands for the activating immunoreceptor NKG2D like MICB or UL-16 binding proteins 1-3. MICA expression was associated with CD80, MHC class I and MHC class II up-regulation, secretion of proinflammatory cytokines, and apoptosis inhibition, but was not accompanied by release of MIC molecules in soluble form. TLR-induced MICA on the monocyte cell surface was detected by autologous NK cells as revealed by NKG2D down-regulation. Although MICA expression did not render monocytes susceptible for NK cell cytotoxicity, LPS-treated monocytes stimulated IFN-gamma production of activated NK cells which was substantially dependent on MICA-NKG2D interaction. No enhanced NK cell proliferation or cytotoxicity against third-party target cells was observed after stimulation of NK cells with LPS-activated monocytes. Our data indicate that MICA-NKG2D interaction constitutes a mechanism by which monocytes and NK cells as an early source of IFN-gamma may communicate directly during an innate immune response to infections in humans.  相似文献   

13.
Human embryonic stem cells (hESCs) provide a unique resource to analyze early stages of human hematopoiesis. However, little is known about the ability to use hESCs to evaluate lymphocyte development. In the present study, we use a two-step culture method to demonstrate efficient generation of functional NK cells from hESCs. The CD56(+)CD45(+) hESC-derived lymphocytes express inhibitory and activating receptors typical of mature NK cells, including killer cell Ig-like receptors, natural cytotoxicity receptors, and CD16. Limiting dilution analysis suggests that these cells can be produced from hESC-derived hemopoietic progenitors at a clonal frequency similar to CD34(+) cells isolated from cord blood. The hESC-derived NK cells acquire the ability to lyse human tumor cells by both direct cell-mediated cytotoxicity and Ab-dependent cellular cytotoxicity. Additionally, activated hESC-derived NK cells up-regulate cytokine production. hESC-derived lymphoid progenitors provide a novel means to characterize specific cellular and molecular mechanisms that lead to development of specific human lymphocyte populations. These cells may also provide a source for innovative cellular immune therapies.  相似文献   

14.
We determined average cellular turnover rates by fitting mathematical models to 5-bromo-2'-deoxyuridine measurements in SIV-infected and uninfected rhesus macaques. The daily turnover rates of CD4(+) T cells, CD4(-) T cells, CD20(+) B cells, and CD16(+) NK cells in normal uninfected rhesus macaques were 1, 1, 2, and 2%, respectively. Daily turnover rates of CD45RA(-) memory T cells were 1%, and those of CD45RA(+) naive T cells were 0.5% for CD4(+) T cells and approximately 1% for CD4(-)CD45RA(+) T cells. In SIV-infected monkeys with high viral loads, the turnover rates of T cells were increased approximately 2-fold, and that of memory T cells approximately 3-fold. The turnover of CD4(+)CD45RA(+) naive T cells was increased 2-fold, whereas that of CD4(-)CD45RA(+) naive T cells was marginally increased. B cells and NK cells also had increased turnover in SIV-infected macaques, averaging 3 and 2.5% per day, respectively. For all cell types studied here the daily turnover rate increased with the decrease of the CD4 count that accompanied SIV infection. As a consequence, the turnover rates of CD4(+) T cells, CD4(-) T cells, B cells, and NK cells within each monkey are strongly correlated. This suggests that the cellular turnover of different lymphocyte populations is governed by a similar process which one could summarize as "generalized immune activation." Because the viral load and the CD4 T cell count are negatively correlated we cannot determine which of the two plays the most important role in this generalized immune activation.  相似文献   

15.
Granulysin is a human cytolytic molecule present in cytotoxic granules with perforin and granzymes. Recombinant 9-kDa granulysin kills a variety of microbes, including bacteria, yeast, fungi, and parasites, and induces apoptosis in tumor cells by causing intracellular calcium overload, mitochondrial damage, and activation of downstream caspases. Reasoning that granulysin delivered by cytotoxic cells may work in concert with other molecules, we crossed granulysin transgenic (GNLY(+/-)) mice onto perforin (perf)- or granzyme B (gzmb)-deficient mice to examine granulysin-mediated killing in a more physiologic whole-cell system. Splenocytes from these animals were activated in vitro with IL-15 to generate cytolytic T cells and NK cells. Cytotoxic cells expressing granulysin require perforin, but not granzyme B, to cause apoptosis of targets. Whereas granzyme B induces mitochondrial damage and activates caspases-3 and -9 in targets, cytotoxic cell-delivered granulysin induces endoplasmic reticulum stress and activates caspase-7 with no effect on mitochondria or caspases-3 and -9. In addition, recombinant granulysin and cell-delivered granulysin activate distinct apoptotic pathways in target cells. These findings suggest that cytotoxic cells have evolved multiple nonredundant cell death pathways, enabling host defense to counteract escape mechanisms employed by pathogens or tumor cells.  相似文献   

16.
Our previous result indicated that memory-like human natural killer (NK) cells from TB pleural fluid cells (PFCs) produced large amounts of IFN-γ in response to Bacille Calmette Guerin (BCG). Furthermore, recent studies have shown that human lymphoid tissues harbored a unique NK cell subset that specialized in production of interleukin (IL)-22, a proinflammatory cytokine that mediates host defense against pathogens. Yet little information was available with regard to the properties of IL-22 production by memory-like human NK cells. In the present study, we found that cytokines IL-15 induced and IL-12 enhanced the levels of IL-22 by NK cells from TB PFCs. In addition, IL-22 but not IL-17 was produced by NK cells from PFCs in response to BCG and M.tb-related Ags. More importantly, the subset of specific IL-22-producing NK cells were distinct from IFN-γ-producing NK cells in PFCs. CD45RO+ or CD45RO- NK cells were sorted, co-cultured with autologous monocytes and stimulated with BCG for the production of IL-22. The result demonstrated that CD45RO+ but not CD45RO- NK cells produced significantly higher level of IL-22. Anti-IL-12Rβ1 mAbs (2B10) partially inhibit the expression of IL-22 by NK cells under the culture with BCG. Consistently, BCG specific IL-22-producing NK cells from PFCs expressed CD45ROhighNKG2Dhighgranzyme Bhigh. In conclusion, our data demonstrated that memory-like antigen-specific CD45RO+ NK cells might participate in the recall immune response for M. tb infection via producing IL-22, which display a critical role to fight against M. tb.  相似文献   

17.
NK cells use perforin rather than granulysin for anticryptococcal activity   总被引:5,自引:0,他引:5  
Cytotoxic lymphocytes have the capacity to kill microbes directly; however, the mechanisms involved are poorly understood. Using Cryptococcus neoformans, which causes a potentially fatal fungal infection in HIV-infected patients, our previous studies showed that granulysin is necessary, while perforin is dispensable, for CD8 T lymphocyte fungal killing. By contrast, the mechanisms by which NK cells exert their antimicrobial activity are not clear, and in particular, the contribution of granulysin and perforin to NK-mediated antifungal activity is unknown. Primary human NK cells and a human NK cell line YT were found to constitutively express granulysin and perforin, and possessed anticryptococcal activity, in contrast to CD8 T lymphocytes, which required stimulation. When granulysin protein and mRNA were blocked by granulysin small interfering RNA, the NK cell-mediated antifungal effect was not affected in contrast to the abrogated activity observed in CD8 T lymphocytes. However, when perforin was inhibited by concanamycin A, and silenced using hairpin small interfering RNA, the anticryptococcal activities of NK cells were abrogated. Furthermore, when granulysin and perforin were both inhibited, the anticryptococcal activities of the NK cells were not reduced further than by silencing perforin alone. These results indicate that the antifungal activity is constitutively expressed in NK cells in contrast to CD8 T lymphocytes, in which it requires prior activation, and perforin, but not granulysin, plays the dominant role in NK cell anticryptococcal activity, in contrast to CD8 T lymphocytes, in which granulysin, but not perforin, plays the dominant role in anticryptococcal activity.  相似文献   

18.
We studied the role of NK cells in regulating human CD8+ T cell effector function against mononuclear phagocytes infected with the intracellular pathogen Mycobacterium tuberculosis. Depletion of NK cells from PBMC of healthy tuberculin reactors reduced the frequency of M. tuberculosis-responsive CD8+IFN-gamma+ cells and decreased their capacity to lyse M. tuberculosis-infected monocytes. The frequency of CD8+ IFN-gamma+ cells was restored by soluble factors produced by activated NK cells and was dependent on IFN-gamma, IL-15, and IL-18. M. tuberculosis-activated NK cells produced IFN-gamma, activated NK cells stimulated infected monocytes to produce IL-15 and IL-18, and production of IL-15 and IL-18 were inhibited by anti-IFN-gamma. These findings suggest that NK cells maintain the frequency of M. tuberculosis-responsive CD8+IFN-gamma+ T cells by producing IFN-gamma, which elicits secretion of IL-15 and IL-18 by monocytes. These monokines in turn favor expansion of Tc1 CD8+ T cells. The capacity of NK cells to prime CD8+ T cells to lyse M. tuberculosis-infected target cells required cell-cell contact between NK cells and infected monocytes and depended on interactions between the CD40 ligand on NK cells and CD40 on infected monocytes. NK cells link the innate and the adaptive immune responses by optimizing the capacity of CD8+ T cells to produce IFN-gamma and to lyse infected cells, functions that are critical for protective immunity against M. tuberculosis and other intracellular pathogens.  相似文献   

19.
Granulysin, a 9-kDa protein localized to human CTL and NK cell granules, is cytolytic against tumor cells and microbes. Molecular modeling predicts that granulysin is composed of five alpha-helices separated by short loop regions. In this report, synthetic peptides corresponding to the linear granulysin sequence were characterized for lytic activity. Peptides corresponding to the central region of granulysin lyse bacteria, human cells, and synthetic liposomes, while peptides corresponding to the amino or carboxyl regions are not lytic. Peptides corresponding to either helix 2 or helix 3 lyse bacteria, while lysis of human cells and liposomes is dependent on the helix 3 sequence. Peptides in which positively charged arginine residues are substituted with neutral glutamine exhibit reduced lysis of all three targets. While reduction of recombinant 9-kDa granulysin increases lysis of Jurkat cells, reduction of cysteine-containing granulysin peptides decreases lysis of Jurkat cells. In contrast, lysis of bacteria by recombinant granulysin or by cysteine-containing granulysin peptides is unaffected by reducing conditions. Jurkat cells transfected with either CrmA or Bcl-2 are protected from lysis by recombinant granulysin or the peptides. Differential activity of granulysin peptides against tumor cells and bacteria may be exploited to develop specific antibiotics without toxicity for mammalian cells.  相似文献   

20.
Cells of the innate immune system act in synergy to provide a first line of defense against pathogens. Here we describe that dendritic cells (DCs), matured with viral products or mimics thereof, including Epstein-Barr virus (EBV), activated natural killer (NK) cells more efficiently than other mature DC preparations. CD56(bright)CD16(-) NK cells, which are enriched in human secondary lymphoid tissues, responded primarily to this DC activation. DCs elicited 50-fold stronger interferon-gamma (IFN-gamma) secretion from tonsilar NK cells than from peripheral blood NK cells, reaching levels that inhibited B cell transformation by EBV. In fact, 100- to 1,000-fold less tonsilar than peripheral blood NK cells were required to achieve the same protection in vitro, indicating that innate immune control of EBV by NK cells is most efficient at this primary site of EBV infection. The high IFN-gamma concentrations, produced by tonsilar NK cells, delayed latent EBV antigen expression, resulting in decreased B cell proliferation during the first week after EBV infection in vitro. These results suggest that NK cell activation by DCs can limit primary EBV infection in tonsils until adaptive immunity establishes immune control of this persistent and oncogenic human pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号