首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, we analysed the eye movements of flatfish for body tilting and compared with that of goldfish. The fish was fixed on the tilting table controlled by computer. The eye movements for body tilting along the different body axis were video-recorded. The vertical and torsional eye rotations were analysed frame by frame. In normal flatfish, vertical eye movement of left eye to leftward tilting was larger than that to rightward tilting. For head up or head down tilting, clear vertical eye movements were observed. On the other hand, torsional eye movements showed similar characteristics as goldfish. These results suggested that sacculus and lagena were important for otolith-ocular eye movements in flatfish.  相似文献   

2.
An otolith organ on ground behave as a detector of both gravity and linear acceleration, and play an important role in controlling posture and eye movement for tilt of the head or translational motion. On the other hand, a gravitational acceleration ingredient to an otolith organ disappears in microgravity environment. However, linear acceleration can be received by otolith organ and produce a sensation that is different from that on Earth. It is suggested that in microgravity signal from the otolith organ may cause abnormality of posture control and eye movement. Therefore, the central nervous system may re-interprets all output from the otolith organ to indicate linear motion. A study of eye movement has been done a lot as one of a reflection related to an otolith organ system. In this study, we examined function of otolith organ in goldfish revealed from analysis of eye movement induced by linear acceleration or the tilt of body. We analyzed both torsional and vertical eye movements from video images frame by frame. For tilting stimulation, torsional eye movements induced by head down was larger than that induced by head up for larger tilt angle than 30 degrees. In the case of linear acceleration below 0.4 G, however, no clear differences were observed in both torsional and vertical eye movement. These results suggest that body tilt and linear acceleration may not be with equivalent stimulation to cause eye movement on the ground.  相似文献   

3.
Medina JF  Carey MR  Lisberger SG 《Neuron》2005,45(1):157-167
We have identified factors that control precise motor timing by studying learning in smooth pursuit eye movements. Monkeys tracked a target that moved horizontally for a fixed time interval before changing direction through the addition of a vertical component of motion. After repeated presentations of the same target trajectory, infrequent probe trials of purely horizontal target motion evoked a vertical eye movement around the time when the change in target direction would have occurred. The pursuit system timed the vertical eye movement by keeping track of the duration of horizontal target motion and by measuring the distance the target traveled before changing direction, but not by learning the position in space where the target changed direction. We conclude that high temporal precision in motor output relies on multiple signals whose contributions to timing vary according to task requirements.  相似文献   

4.
V R Galoian 《Biofizika》1978,23(2):370-378
A comparative study of torsional movement of the eye in passive and active tilting of the head and body of the object was carried out. Similarity of torsional movement of the eyes in passive and active movements was shown. It was found by the method of exclusion and selective stimulation of vestibular, cervikal, lumbar optokinetic reflexes, that neither the cervikal, nor lumbar reflexes elicited spontaneous torsional movements of the eyes and had no influence on them. A direct study (coinciding with rotation direction of the stimulus of head rotation) and the reverse (noncoinciding) torsional tracing of a rotating disc and tracing without head movements was investigated. During direct tracing depression of saccades and extention of the slow phase of torsion was found; during the reverse one--a decrease of the eye drist and increase of the amplitude and number of saccades. Phenomena of a seeming acceleration and deceleration of disc rotation etc. have been observed. It was found that with torsional saccades vision was retained. The presence of optokinetic control of phases of torsional eye movements formation has been recorded. Tracing without rotation of the head was accompanied by torsional nistagmus. Possible causes of incomplete stabilisation and optokinetic torsional tracing are discussed.  相似文献   

5.
Grip force adjustments to changes of object loading induced by external changes of the direction of gravity during discrete arm movements with a grasped object were analyzed during normal and anesthetized finger sensibility. Two subjects were seated upright in a rotatable chair and rotated backwards into a horizontal position during discrete movements with a hand-held instrumented object. The movement direction varied from vertical to horizontal inducing corresponding changes in the direction of gravity, but the orientation of the movement in relation to the body remained unaffected. During discrete vertical movements a maximum of load force occurs early in upward and late in downward movements; during horizontal movements two load force peaks result from both acceleratory and deceleratory phases of the movement. During performance with normal finger sensibility grip force was modulated in parallel with fluctuations of load force during vertical and horizontal movements. The grip force profile adopted to the varying load force profile during the transition from the vertical to the horizontal position. The maximum grip force occurred at the same time of maximum load force irrespective of the movement plane. During both subjects' first experience of digital anesthesia the object slipped from the grasp during rotation to the horizontal plane. During the following trials with anesthetized fingers subjects substantially increased their grip forces, resulting in elevated force ratios between maximum grip and load force. However, grip force was still modulated with the movement-induced load fluctuations and maximum grip force coincided with maximum load force during vertical and horizontal movements. This implies that the elevated force ratio between maximum grip and load force does not alter the feedforward system of grip force control. Cutaneous afferent information from the grasping digits seems to be important for the economic scaling of the grip force magnitude according to the actual loading conditions and for reactive grip force adjustments in response to load perturbations. However, it plays a subordinate role for the precise anticipatory temporal coupling between grip and load forces during voluntary object manipulation.  相似文献   

6.
Grip force adjustments to changes of object loading induced by external changes of the direction of gravity during discrete arm movements with a grasped object were analyzed during normal and anesthetized finger sensibility. Two subjects were seated upright in a rotatable chair and rotated backwards into a horizontal position during discrete movements with a hand-held instrumented object. The movement direction varied from vertical to horizontal inducing corresponding changes in the direction of gravity, but the orientation of the movement in relation to the body remained unaffected. During discrete vertical movements a maximum of load force occurs early in upward and late in downward movements; during horizontal movements two load force peaks result from both acceleratory and deceleratory phases of the movement. During performance with normal finger sensibility grip force was modulated in parallel with fluctuations of load force during vertical and horizontal movements. The grip force profile adopted to the varying load force profile during the transition from the vertical to the horizontal position. The maximum grip force occurred at the same time of maximum load force irrespective of the movement plane. During both subjects' first experience of digital anesthesia the object slipped from the grasp during rotation to the horizontal plane. During the following trials with anesthetized fingers subjects substantially increased their grip forces, resulting in elevated force ratios between maximum grip and load force. However, grip force was still modulated with the movement-induced load fluctuations and maximum grip force coincided with maximum load force during vertical and horizontal movements. This implies that the elevated force ratio between maximum grip and load force does not alter the feedforward system of grip force control. Cutaneous afferent information from the grasping digits seems to be important for the economic scaling of the grip force magnitude according to the actual loading conditions and for reactive grip force adjustments in response to load perturbations. However, it plays a subordinate role for the precise anticipatory temporal coupling between grip and load forces during voluntary object manipulation.  相似文献   

7.

In four of six subjects with narcolepsy, multiple sleep latency tests-examined disconjugated binocular eye movements were observed in the very beginning of multiple sleep latency test recordings. The eye movements appeared before disappearance of alpha and decrease of chin electromyography. All subjects with disconjugated eye movements had also rapid eye movement sleep without atonia and symptoms of rapid eye movement behavior disorder in their past history. Three of them (all children) had post-vaccination narcolepsy. It is not known whether such eye movements are seen in most narcoleptic subjects or whether they are more common in autoimmune/inflammatory narcolepsy with involvement of the structures that coordinate eye movements.

  相似文献   

8.
The hypothesis of right hemisphere predominance in REM sleep and of an increase in left activity throughout the night have been tested by analyzing the distribution of vertical and of horizontal rapid eye movements (REMs) to the right and to the left during the first and the last REM periods in 5 right-handed subjects. Neither the expected superiority of REMs to the left nor variations along the REM periods were found. For vertical eye movements our data suggest a superiority of upward movements during REM. In waking some empirical evidences suggest a relationship between upward eye movements and right hemisphere functioning although to date no hemispheric model can explain it.  相似文献   

9.
A search-coil method for two-dimensional chronic registration of eye and head movements is described. The method is based on the analysis of the electromotive force induced by a magnetic field in a search coil. The output parameters of the original dual system were measured using both the standard search coil and that implanted into monkey's eye. The precision of eye movement recording was evaluated in real time. Standard deviation of spontaneous noise level for both channels was equal to 0.16 degrees (deg). The same parameters representing eye movement error during gaze fixation in the horizontal (in the range of -20/+20 deg) and vertical (in the range of -13/+13 deg) directions were equal to 0.27-0.38 and 0.23-0.31 deg, respectively. The obtained errors were comparable with the angular size of the peripheral target stimuli (0.20 deg), which had to be traced by an animal with saccadic movements.  相似文献   

10.

Background

Visual exploration of the surroundings during locomotion at heights has not yet been investigated in subjects suffering from fear of heights.

Methods

Eye and head movements were recorded separately in 16 subjects susceptible to fear of heights and in 16 non-susceptible controls while walking on an emergency escape balcony 20 meters above ground level. Participants wore mobile infrared eye-tracking goggles with a head-fixed scene camera and integrated 6-degrees-of-freedom inertial sensors for recording head movements. Video recordings of the subjects were simultaneously made to correlate gaze and gait behavior.

Results

Susceptibles exhibited a limited visual exploration of the surroundings, particularly the depth. Head movements were significantly reduced in all three planes (yaw, pitch, and roll) with less vertical head oscillations, whereas total eye movements (saccade amplitudes, frequencies, fixation durations) did not differ from those of controls. However, there was an anisotropy, with a preference for the vertical as opposed to the horizontal direction of saccades. Comparison of eye and head movement histograms and the resulting gaze-in-space revealed a smaller total area of visual exploration, which was mainly directed straight ahead and covered vertically an area from the horizon to the ground in front of the feet. This gaze behavior was associated with a slow, cautious gait.

Conclusions

The visual exploration of the surroundings by susceptibles to fear of heights differs during locomotion at heights from the earlier investigated behavior of standing still and looking from a balcony. During locomotion, anisotropy of gaze-in-space shows a preference for the vertical as opposed to the horizontal direction during stance. Avoiding looking into the abyss may reduce anxiety in both conditions; exploration of the “vertical strip” in the heading direction is beneficial for visual control of balance and avoidance of obstacles during locomotion.  相似文献   

11.
Six goldfish (1 normal, 1 with otoliths removed on both sides, 4 with otoliths removed on one side) were flown in space. The behaviors of the fish were recorded with a video camera on Mission Elapsed Time (MET) Day-00, 02, 05, 08, and 12. On MET Day-00, fish with otoliths removed on one side showed rolling behavior toward the operated side. No rolling behaviors were observed after MET Day-8. Five fish showed backward looping behaviors during the mission. After the space experiment, torsional eye movements and vertical eye movements were examined by body tilting. The experiments showed that the sensitivity of eye movements were low for head up tilting and tilting to operated side.  相似文献   

12.
Behavioral responses and eye movements of fish during linear acceleration were reviewed. It is known that displacement of otoliths in the inner ear leads to body movements and/or eye movements. On the ground, the utriculus of the vestibular system is stimulated by otolith displacement caused by gravitational and inertial forces during horizontal acceleration of whole body. When the acceleration is imposed on the fish's longitudinal axis, the fish showed nose-down and nose-up posture for tailward and noseward displacement of otolith respectively. These responses were understood that the fish aligned his longitudinal body axis in a plane perpendicular to the direction of resultant force vector acting on the otoliths. When the acceleration was sideward, the fish rolled around his longitudinal body axis so that his back was tilted against the direction in which the inertial force acted on the otoliths. Linear acceleration applied to fish's longitudinal body axis evoked torsional eye movement. Direction of torsion coincided with the direction of acceleration, which compensate the change of resultant force vector produced by linear acceleration and gravity. Torsional movement of left and right eye coordinated with each other. In normal fish, both sinusoidal and rectangular acceleration of 0.1G could evoke clear eye torsion. Though the amplitude of response increased with increasing magnitude of acceleration up to 0.5 G, the torsion angle did not fully compensate the angle calculated from gravity and linear acceleration. Removal of the otolith on one side reduced the response amplitude of both eyes. The torsion angle evoked by rectangular acceleration was smaller than that evoked by sinusoidal acceleration in both normal and unilaterally labyrinthectomized fish. These results suggest that eye torsion of fish include both static and dynamic components.  相似文献   

13.
In order to determine the effects of support and proprioceptive afferentation on the characteristics of visual-manual tracking (VMT), we used a model of weightlessness—horizontal dry immersion. Altogether 30 subjects who stayed in the immersion bath from 5 to 7 days were examined to evaluate the accuracy of the VMT in tasks to pursue the jerky (saccadically) and smooth (linear, pendular and circular) movement of a point visual stimulus. Examinations were performed before, during and after immersion using electrooculography (to record eye movements) and a joystick (to record hand movements) with a biological visual feedback—one of the two visible stimuli on the screen matched the current angle of the joystick handle. Computerized visual stimulation programs were presented to subjects using virtual-reality glasses. We analyzed the time, amplitude and velocity characteristics of the visual and manual tracking (VT and MT respectively), including the efficiency ratio (eVT and eMT) and the gain (gVT and gMT) as the respective ratios of the amplitudes and velocities of the eyes/hand movements to the stimulus movement. eVT was significantly reduced in comparison to the baseline all the time, while the subject lay in the immersion bath and until R+4 day after immersion. eMT decreased significantly only on I-1 and I-3 days of immersion. gVT significantly differed from the baseline only on I-3 and I-6 days of immersion and R+1 day after immersion. We found no significant changes in gMT. Evaluations of the vestibular function (VF) were performed before and after immersion using videooculography. We analyzed the static torsional otolith-cervical-ocular reflex (OCOR), the dynamical vestibular-cervical-ocular reactions (VCOR), spontaneous eye movements (SpEM), and the accuracy of the perception of the subjective visual vertical (SVV). After immersion, 47% of all subjects had a significant reduction of OCOR with a simultaneous significant increase of VCOR on 37% of subjects, as well as significant changes in the accuracy of the perception of the SVV, which correlated with changes in OCOR. We found a correlation between characteristics of the VT and MT and between the characteristics of the VF and VT, but we found no correlation between VF and MT. We discovered that removal of the support and minimization of the proprioceptive afferentation has a greater impact upon the accuracy of the VT than the accuracy of the MT.  相似文献   

14.
A control systems model of the vestibulo-ocular reflex (VOR) originally derived for yaw rotation about an eccentric axis (Crane et al. 1997) was applied to data collected during ambulation and dynamic posturography. The model incorporates a linear summation of an otolith response due to head translation scaled by target distance, adding to a semi-circular canal response that depends only on angular head rotation. The results of the model were compared with human experimental data by supplying head angular velocity as determined by magnetic search coil recording as the input for the canal branch of the model and supplying linear acceleration as determined by flux gate magnetometer measurements of otolith position. The model was fit to data by determining otolith weighting that enabled the model to best fit the data. We fit to the model experimental data from normal subjects who were: standing quietly, walking, running, or making active sinusoidal head movements. We also fit data obtained during dynamic posturography tasks of: standing on a platform sliding in a horizontal plane at 0.2 Hz, standing directly on a platform tilting at 0.1 Hz, and standing on the tilting platform buffered by a 5-cm thick foam rubber cushion. Each task was done with the subject attending a target approximately 500, 100, or 50 cm distant, both in light and darkness. The model accurately predicted the observed VOR response during each test. Greater otolith weighting was required for near targets for nearly all activities, consistent with weights for the otolith component found in previous studies employing imposed rotations. The only exceptions were for vertical axis motion during standing, sliding, and tilting when the platform was buffered with foam rubber. In the horizontal axis, the model always fit near target data better with a higher otolith component. Otolith weights were similar with the target visible and in darkness. The model predicts eye movement during both passive whole-body rotation and free head movement in space implying that the VOR is controlled by a similar mechanism during both situations. Factors such as vision, proprioception, and efference copy that are available during head free motion but not during whole-body rotation are probably not important to gaze stabilization during ambulation and postural stabilizing movement. The linearity of the canal-otolith interaction was tested by re-analysis of the whole body rotation data on which the model is based (Crane et al. 1997). Normalized otolith-mediated gain enhancement was determined for each axis of rotation. This analysis uncovered minor non-linearities in the canal-otolith interaction at frequencies above 1.6 Hz and when the axis of rotation was posterior to the head. Received: 11 March 1998 / Received in revised form: 1 March 1999  相似文献   

15.
The human horizontal eye movement system produces quick, precise, conjugate eye movements called saccades. These are important in normal vision. For example, reading tasks exclusively utilize saccadic eye movements. The majority of saccades have dynamic overshoot. The amplitude of this overshoot is independent of saccadic amplitude, and is such that it places the image of the stimulus within the retinal region of maximum acuity within a minimum of time. A computer based model of the saccadic mechanisms was used to study the origin of this overshoot. It was discussed that dynamic overshoot cannot be attributed to biomechanism properites of the eye movement mechanism, but must instead be explained by variations in the controlling nervous activity. The form of this neural controller signal is very similar to that required for a time optimal response of an inertial system.  相似文献   

16.
van Beers RJ 《PloS one》2008,3(4):e2070
The durations and trajectories of our saccadic eye movements are remarkably stereotyped. We have no voluntary control over these properties but they are determined by the movement amplitude and, to a smaller extent, also by the movement direction and initial eye orientation. Here we show that the stereotyped durations and trajectories are optimal for minimizing the variability in saccade endpoints that is caused by motor noise. The optimal duration can be understood from the nature of the motor noise, which is a combination of signal-dependent noise favoring long durations, and constant noise, which prefers short durations. The different durations of horizontal vs. vertical and of centripetal vs. centrifugal saccades, and the somewhat surprising properties of saccades in oblique directions are also accurately predicted by the principle of minimizing movement variability. The simple and sensible principle of minimizing the consequences of motor noise thus explains the full stereotypy of saccadic eye movements. This suggests that saccades are so stereotyped because that is the best strategy to minimize movement errors for an open-loop motor system.  相似文献   

17.
Summary A discussion is given of considerations involved in forming a frequency spectrum of a signal such as human fixation eye movements, in which an impulsive signal (saccadic movements) and a noise-like signal (tremor movements) are present together. A method is outlined which enables the spectrum of each component to be determined. Results are presented of human eye movement frequency spectra and it is shown that the tremor movements alone are adequate to prevent the fading of vision under conditions of retinal image stabilisation.An interpretation of the observed frequency spectra is given in terms of a model, which assumes that the dynamics of the eye muscle system are linear and that the active state input producing tremor has a flat frequency spectrum. From this it is deduced that the eye behaves as an overdamped second order system with time constants of 0.002 and 0.02 seconds. The active state input involved in production of an involuntary saccade is shown to consist of an impulse function with exponential rise and decay.  相似文献   

18.

Background

The mouse is the most commonly used animal model in biomedical research because of recent advances in molecular genetic techniques. Studies related to eye movement in mice are common in fields such as ophthalmology relating to vision, neuro-otology relating to the vestibulo-ocular reflex (VOR), neurology relating to the cerebellum’s role in movement, and psychology relating to attention. Recording eye movements in mice, however, is technically difficult.

Methods

We developed a new algorithm for analyzing the three-dimensional (3D) rotation vector of eye movement in mice using high-speed video-oculography (VOG). The algorithm made it possible to analyze the gain and phase of VOR using the eye’s angular velocity around the axis of eye rotation.

Results

When mice were rotated at 0.5 Hz and 2.5 Hz around the earth’s vertical axis with their heads in a 30° nose-down position, the vertical components of their left eye movements were in phase with the horizontal components. The VOR gain was 0.42 at 0.5 Hz and 0.74 at 2.5 Hz, and the phase lead of the eye movement against the turntable was 16.1° at 0.5 Hz and 4.88° at 2.5 Hz.

Conclusions

To the best of our knowledge, this is the first report of this algorithm being used to calculate a 3D rotation vector of eye movement in mice using high-speed VOG. We developed a technique for analyzing the 3D rotation vector of eye movements in mice with a high-speed infrared CCD camera. We concluded that the technique is suitable for analyzing eye movements in mice. We also include a C++ source code that can calculate the 3D rotation vectors of the eye position from two-dimensional coordinates of the pupil and the iris freckle in the image to this article.  相似文献   

19.
Changes in limb dynamics during the practice of rapid arm movements   总被引:4,自引:0,他引:4  
In our study we examined Bernstein's hypothesis that practice alters the motor coordination among the muscular and passive joint moments. In particular, we conducted dynamical analyses of a human multisegmental movement during the practice of a task involving the upper extremity. Seven male human volunteers performed maximal-speed, unrestrained vertical arm movements whose upward and downward trajectories between two target endpoints required the hand to round a barrier, resulting in complex shoulder, elbow, and wrist joint movements. These movements were recorded by high-speed ciné film, and myopotentials from selected upper-extremity muscles were recorded. The arm was modeled as interconnected rigid bodies, so that dynamical interactions among the upper arm, forearm, and hand could be calculated. With practice, subjects achieved significantly shorter movement times. As movement times decreased, all joint-moment components (except gravity) increased, and the moment-time and EMG profiles were changed significantly. Particularly during reversals in movement direction, the changes in moment-time and EMG profiles were consistent with Bernstein's hypothesis relating practice effects and intralimb coordination: with practice, motor coordination was altered so that individuals employed reactive phenomena in such a way as to use muscular moments to counterbalance passive-interactive moments created by segment movements.  相似文献   

20.
Previous studies have indicated that saccadic eye movements correlate positively with perceptual alternations in binocular rivalry, presumably because the foveal image changes resulting from saccades, rather than the eye movement themselves, cause switches in awareness. Recently, however, we found evidence that retinal image shifts elicit so-called onset rivalry and not percept switches as such. These findings raise the interesting question whether onset rivalry may account for correlations between saccades and percept switches.We therefore studied binocular rivalry when subjects made eye movements across a visual stimulus and compared it with the rivalry in a ‘replay’ condition in which subjects maintained fixation while the same retinal displacements were reproduced by stimulus displacements on the screen. We used dichoptic random-dot motion stimuli viewed through a stereoscope, and measured eye and eyelid movements with scleral search-coils.Positive correlations between retinal image shifts and perceptual switches were observed for both saccades and stimulus jumps, but only for switches towards the subjects'' preferred eye at stimulus onset. A similar asymmetry was observed for blink-induced stimulus interruptions. Moreover, for saccades, amplitude appeared crucial as the positive correlation persisted for small stimulus jumps, but not for small saccades (amplitudes < 1°). These findings corroborate our tenet that saccades elicit a form of onset rivalry, and that rivalry is modulated by extra-retinal eye movement signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号