首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.
The penicillin G amidase (PGA) from Alcaligenes faecalis, which has interesting properties for use in combinatorial biochemistry, was produced by recombinant expression in Escherichia coli. The corresponding gene was cloned into a multicopy vector under the strict regulatory control of the rhamnose inducible promoter. Cells were grown in a synthetic minimal medium in a bioreactor (5 l working vol.), and production of PGA was induced by repeated addition of the inducer rhamnose, that served also as a carbon source. The fermentation yield was about 4500 units PGA activity per liter of culture medium.  相似文献   

2.
Various concentrations of isopropyl β-d-thiogalactopyranoside (IPTG) were used to induce production of the enzyme penicillin G acylase by recom binant Escherichia coli harboring plasmid pQEA11. The plasmid pQEA11 carries a wild-type pga gene, which is under the control of the tac promoter and lacIq. At low IPTG concentrations (0.025 – 0.1 mM), enzyme activity increased with increasing IPTG concentrations. At higher IPTG concentrations (0.2 and 0.5 mM), enzyme activity declined progressively. Examination of induced recombinant E. coli cells by transmission electron microscopy showed the presence of only periplasmic inclusion bodies at low IPTG concentrations (up to 0.1 mM) and both periplasmic and cytoplasmic inclusion bodies at high IPTG concentrations (0.2 mM and 0.5 mM). Results from sodium dodecyl sulfate/polyacrylamide gel electrophoresis and immunoblots of whole-cell proteins, membrane proteins and inclusion body proteins in these cells indicated that cytoplasmic inclusion bodies constituted an accumulation of preproenzyme (i.e., precursor polypeptide containing a signal peptide) and that periplasmic inclusion bodies constituted an accumulation of proenzyme (i.e., precursor polypeptide lacking a signal peptide). Received: 27 March 1996 / Received revision: 2 July 1996 / Accepted: 10 November 1996  相似文献   

3.
Summary The penicillin G amidase (PGA) activity of a parent strain of E. coli (PCSIR-102) was enhanced by chemical mutagenization with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). After screening and optimization, a penicillinase deficient mutant (MNNG-37) was isolated and found effective for the production of penicillin G amidase as compared to the parent strain of E. coli (PCSIR-102). Penicillin G amidase activity of MNNG-37 appeared during an early stage of growth, whereas PCSIR-102 did not exhibit PGA activity due to the presence of penicillinase enzyme which inhibits the activity of enzyme PGA. However, MNNG-37 gave a three-fold increase in enzyme activity (231 IU mg−1) as compared to PCSIR-102 (77 IU mg−1) in medium containing 0.15 and 0.1% concentrations of phenylacetic acid, respectively which was added after 6 h of cultivation. The difference in K m values of the enzyme produced by parent strain PCSIR-102 (0.26 mM) and mutant strain MNNG-37 (0.20 mM) is significant (1.3-fold increase in K m value) which may show the superiority of the latter in terms of better enzyme properties.  相似文献   

4.
Summary Pga gene from the industrial strain of E. coli RE3 hyperproducing penicillin G acylase (PGA) was cloned using a simple and rapid NIPAB-based chromogenic method for the detection of PGA-positive recombinant clones. Heterogeneous genetical material was prepared by subcloning pga in vectors pACYC184, pBR322-2 and pK19. The highest constitutive expression of pga was observed in a strain bearing the recombinant plasmid pKA18 synthesizing 2.5 times more of enzyme than the parent strain.  相似文献   

5.
The potential for production of penicillin G-acylase (PGA), encoded by the chromosomal genepga i, of four strains belonging to a genealogical line derived from the strainEscherichia coli W, was evaluated in a medium with and without the inducer phenylacetic acid (PA). These strains were used as hosts of the recombinant plasmid pKA18, in which the structural genepga c isolated from the strain RE3, the best host strain of a line giving the highest production, was cloned. The presence of the inducer reduced the copy number of the plasmid in all recombinant strains. Only in recombinant strain RE3 (pKA18) the reduction of the gene dosage ofpga c resulted also in the reduction of the amount of PGA synthesized by the cells. The reduced activity of the cells did not result from a segregation of plasmid-free clones. Also the growth rate was decreased by 20 and 40% in the host and recombinant strains, respectively. The host strain RE3 showing the highest production of PGA was also the best host of the recombinant plasmid in terms of the segregational stability and copy number (198 copies per chromosome). The recombinant strain RE3 (pKA18) also provided the highest production of PGA.  相似文献   

6.
Escherichia coli is one of the most widely used hosts for the production of recombinant proteins. However, there are often problems in recovering substantial yields of correctly folded proteins. One approach to solve these problems is to have recombinant proteins secreted into the periplasmic space or culture medium. The secretory production of recombinant proteins has several advantages, such as simplicity of purification, avoidance of protease attack and N-terminal Met extension, and a better chance of correct protein folding. In addition to the well-established Sec system, the twin-arginine translocation (TAT) system has recently been employed for the efficient secretion of folded proteins. Various strategies for the extracellular production of recombinant proteins have also been developed. For the secretory production of complex proteins, periplasmic chaperones and protease can be manipulated to improve the yields of secreted proteins. This review discusses recent advances in secretory and extracellular production of recombinant proteins using E. coli.  相似文献   

7.
The adsorption of penicillin G acylase (PGA) from B. megaterium and from Escherichia coli on a cationic resin, Streamline SP XL, was studied using both packed and expanded beds. Stability assays showed that penicillin acylases from the two sources presented high irreversible deactivation at pH 4.0 and 4.5, but remained stable at pH 4.8. Adsorption experiments performed in a packed bed (PB), in the pH range 4.8–5.8, showed highest adsorption yields at pH 4.8, for both enzymes. Using small expanded bed adsorption (EBA) columns, PGA was directly recovered and partially purified from E. coli crude extracts, E. coli homogenates, and from B. megaterium centrifuged broth in a single unit operation. Global recovery yields of 91.0, 55.0 and 7.4% and purification factors of 4.5-, 7.5- and 12.7-fold were achieved, respectively. The elution yields of penicillin acylase obtained with these cationic EBA processes when working with E. coli homogenate and B. megaterium centrifuged medium were of 100 and 52%, respectively. The comparison of adsorption capacities of E. coli penicillin acylase from crude extracts onto Streamline SP XL showed similar results for packed-bed and for expanded-bed modes. However, PGA adsorption yields for E. coli (homogenate) and B. megaterium (centrifuged medium) were substantially lower than the values obtained for E. coli crude extract, due to the competition of cell debris and other components present in the B. megaterium medium.  相似文献   

8.
Penicillin G acylase (PGA; E.C. 3.5.1.11) is an important enzyme which has broad applications in industries of β-lactim antibiotics production. In this study, a promising PGA gene from Alcaligenes faecalis (afpga) and another pcm gene encoding protein isoaspartate methyltransferase (PIMT) were constructed into pET43.1a(+) and pET28a(+), respectively. The recombinant plasmids pETAFPGA and pETPCM were transformed into the same host cell Escherichia coli BL21 (DE3). Results suggested that the two plasmids could peacefully exist in the host cell and the two genes could be efficiently expressed after induction. The product of pcm gene could function as a helper molecule for enzyme AFPGA. PIMT increased the enzymatic activities in supernatant of ferment broth (1.6 folds) and cell lysate (1.8 folds), while it did not significantly affect the expression level of penicillin G acylase.  相似文献   

9.

Background  

During the last years B. megaterium was continuously developed as production host for the secretion of proteins into the growth medium. Here, recombinant production and export of B. megaterium ATCC14945 penicillin G amidase (PGA) which is used in the reverse synthesis of β-lactam antibiotics were systematically improved.  相似文献   

10.
Summary To characterize the molecular properties of CGTase from alkalophilic Bacillus sp. E1 (BCGTE1), a genomic clone for a CGTase was isolated. Expression of recombinant BCGTE1 in E. coli was analyzed by immunoblotting. It showed that the nascent recombinant BCGTE1 expressed was 87 kDa but it was processed into the mature enzyme of 81 kDa. With the process it was secreted predominantly into the culture medium via periplasmic space. This feature is different from other Bacillus CGTases expressed in E. coli, which were present mostly in the periplasmic space.  相似文献   

11.
The pac gene encoding penicillin acylase (PAC) was overexpressed under the regulation of the T7 promoter in Escherichia coli. PAC, with its complex formation mechanism, serves as a unique target protein for demonstration of several key strategies for enhancing recombinant protein production. The current T7 system for pac overexpression was fraught with various technical hurdles. Upon the induction with a conventional inducer of isopropyl-β-d-thiogalactopyranoside (IPTG), the production of PAC was limited by the accumulation of PAC precursors (proPAC) as inclusion bodies and various negative cellular responses such as growth inhibition and cell lysis. The expression performance could be improved by the coexpression of degP encoding a periplasmic protein with protease and chaperone activities. In addition to IPTG, arabinose was shown to be another effective inducer. Interestingly, arabinose not only induced the current T7 promoter system for pac expression but also facilitated the posttranslational processing of proPAC for maturation, resulting in significant enhancement for the production of PAC. Glycerol appeared to have an effect similar to, but not as significant as, arabinose for enhancing the production of PAC. The study highlights the importance of developing suitable genetically engineered strains with culture conditions for enhancing recombinant protein production in E. coli.  相似文献   

12.
Cloned penicillin G acylase (PGA) from Escherichia coli ATCC 11105 was mutagenized in vivo using N-methyl-N-nitrosoguanidine. Mutants of PGA were selected by their ability to allow growth of the host strain E. coli M8820 with the new substrates phenylacetyl--alanyl-l-proline (PhAc-Ala-Pro) phthalyl-l-leucine (Pht-Leu) or phthalylglycyl-l-proline (Pht-Gly-Pro) as sole source of proline and leucine respectively. PGA mutants were purified and immobilized onto spherical methacrylate (G-gel). The immobilized form of mutant PGA selected with (PhAc-gbAla-Pro) hydrolyzed 95% of 9 mmol penicillin G 30% faster than wild-type PGA using the same specific activities. The specific activity of the soluble enzyme was 2.7-fold, and inhibition by phenylacetic acid was halved. Immobilized PGA mutant selected with Pht-Gly-Pro hydrolyzed penicillin G 20% faster than wild-type PGA. The K m of the soluble enzyme was increased 1.7-fold. Furthermore, the latter two mutants were also 3.6-fold more stable at 45° C than wild-type PGA. The specific activity of the mutant selected with Pht-Leu was 6.3-fold lower, and inhibition by phenylacetic acid was increased 13-fold.  相似文献   

13.
One clone (ACPGA001) exhibiting penicillin G acylase (PGA) activity was screened from a metagenomic library by using a medium containing penicillin G. A novel PGA gene from the inserted fragment of ACPGA001 was obtained by sequencing. The amino acid sequence of ACPGA001 PGA exhibited <33 % similarity to PGAs retrieved from GenBank. This gene was expressed in Escherichia coli M15 and the recombinant protein was purified and characterized. The ACPGA001 PGA exhibited a maximum activity at 60 °C and showed high activity at pH 4–10 with an optimum pH of 8.0. This enzyme was stable at 40 °C for 70 min with a half-life of 60 min at 55 °C. These beneficial characteristics of ACPGA001 PGA provide some advantages for the potential application of ACPGA001 PGA in industry.  相似文献   

14.
15.
1,3-Propanediol (1,3-PD) has numerous applications in polymers, cosmetics, foods, lubricants, and medicines as a bifunctional organic compound. The genes for the production of 1,3-PD in Klebsiella pneumoniae, dhaB, which encodes glycerol dehydratase, and dhaT, which encodes 1,3-PD oxidoreductase, and gdrAB, which encodes glycerol dehydratase reactivating factor, are naturally under the control of different promoters and are transcribed in different directions. These genes were coexpressed in E. coli using two incompatible plasmids (pET28a and pET22b) in the presence of selective pressure. The recombinant E. coli coexpressed the glycerol dehydratase, 1,3-propanediol oxidoreductase and reactivating factor for the glycerol dehydratase at high levels. In a fed-batch fermentation of glycerol and glucose, the recombinant E. coli containing these two incompatible plasmids consumed 14.3 g/l glycerol and produced 8.6 g/l 1,3-propanediol. In the substitution case of yqhD (encoding alcohol dehydrogenase from E. coli) for dhaT, the final 1,3-propanediol concentration of the recombinant E. coli could reach 13.2 g/l.  相似文献   

16.
利用PCR和分子克隆技术从雷氏普罗威登斯菌(Prouidencia rettgeri)(ATCC29944)的基因组DNA中获得一个青霉素G酰化酶(penicillinGacylase,PGA)基因并将其装入表达质粒pET24a。携带有重组质粒pETPGA的Escherichia coli基因工程菌BL21(DE3)/pETPGA实现了PGA的高效表达,对发酵条件的研究表明基因工程菌在24℃,添加5g/L甘油条件下以1.0mmol/LIPTG诱导1.5h酶活力即达到993.4U/L,比野生菌酶活力(15U/L)提高了66倍。  相似文献   

17.
Summary The structural gene yqhD from a wild-type Escherichia coli encoding 1,3-propanediol oxidoreductase isoenzyme and the structural gene dhaB from Citrobacter freundii encoding glycerol dehydratase were amplified by using the PCR method. The temperature control expression vector pHsh harboring the yqhD and dhaB genes was transformed into E. coli JM109 to yield the recombinant strain E. coli JM109 (pHsh-dhaB-yqhD). The response surface method (RSM) was then applied to further optimize the fermentation condition of the recombinant strain. A mathematical model was then developed to show the effect of each medium composition and their interactions on the production of 1,3-propanediol by recombinant strain E. coli JM109. The model estimated that a maximal yield of 1,3-propanediol (43.86 g/l) could be obtained when the concentrations of glycerol, yeast extract and vitamin B12 were set at 61.8 g/l, 6.2 g/l and 49 mg/l, respectively; and the fermentation time was 30 h. These predicted values were also verified by validation experiments. Compared with the values obtained by other runs in the experimental design, the optimized medium resulted in a significant increase in the yield of 1,3-propanediol. The yield and productivity under the optimal parameters and process can reach 43.1 g/l and 1.54 g/l/h. Maximum 1,3-propanediol yield of 41.1 g/l was achieved in a 5-l fermenter using the optimized medium. This makes the engineered strain have potential application in the conversion of glycerol to 1,3-propanediol on an industrial scale.  相似文献   

18.
Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, we constructed various recombinant E. coli HB101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic and (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selected based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the Hindlll fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene. (c) 1993 John Wiley & Sons, Inc.  相似文献   

19.
In order to optimize the production of recombinant potato carboxypeptidase inhibitor (rePCI), a protein with 39 amino acid residues and three disulphide bridges, by Escherichia coli MC1061[pIMAM3], the effects of various parameters were investigated. Production of rePCI in M9CAS medium was optimal at 37°C and using low concentrations of glycerol as a carbon source. Increasing concentrations of glycerol caused a decrease in the production of rePCI, which was almost totally inhibited above 1% glycerol. Relatively high concentrations of oligoelements in the culture medium also inhibited the production of rePCI. We obtained a 100-fold increase in the production of rePCI, from 2 to 200 mg/l, when growing bacteria in a fed-batch aerobic culture using a 2-1 fermentor. RePCI was found exclusively in the supernatant, although the genetic construction was designed for it to be released into the periplasmic space. Large quantities of rePCI could be easily purified from the supernatants of these cultures. Our conditions of fed-batch, aerobic fermentation could be used for overproduction to high levels of other recombinant proteins.  相似文献   

20.
Summary An in vivo cloning system based on mini-Mu derivatives was used for cloning of E. coli penicillin G acylase gene (pac). We have constructed several recombinant clones producing penicillin G acylase and some of them exhibit approximately two times higher activity than original strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号