首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
Primary cilia are antenna-like sensory microtubule structures that extend from basal bodies, plasma membrane–docked mother centrioles. Cellular quiescence potentiates ciliogenesis, but the regulation of basal body formation is not fully understood. We used reverse genetics to test the role of the small calcium-binding protein, centrin2, in ciliogenesis. Primary cilia arise in most cell types but have not been described in lymphocytes. We show here that serum starvation of transformed, cultured B and T cells caused primary ciliogenesis. Efficient ciliogenesis in chicken DT40 B lymphocytes required centrin2. We disrupted CETN2 in human retinal pigmented epithelial cells, and despite having intact centrioles, they were unable to make cilia upon serum starvation, showing abnormal localization of distal appendage proteins and failing to remove the ciliation inhibitor CP110. Knockdown of CP110 rescued ciliation in CETN2-deficient cells. Thus, centrin2 regulates primary ciliogenesis through controlling CP110 levels.  相似文献   

3.
Centriole and basal body formation during ciliogenesis revisited.   总被引:8,自引:0,他引:8  
This review is concerned with the formation during ciliogenesis of centrioles and basal bodies, primarily in epithelial multi-ciliated cells from the developing vertebrate respiratory and reproductive tracts. During ciliated cell differentiation, in these as well as in other cell types, cilium formation is preceded by the formation of centrioles assembled from precursor structures having little resemblance to the mature organelle. The origin, composition and function of the centriole precursor structures in generating large numbers of centrioles in a short period of time during ciliogenesis is discussed. This review also focuses on the biochemistry of centrioles and basal bodies and on recent experimental evidence that DNA might be associated with these structures.  相似文献   

4.
Ciliogenesis is regulated by context-dependent cellular cues, including some transduced through appendage-like structures on ciliary basal bodies called transition fibers and basal feet. However, the molecular basis for this regulation is not fully understood. The Odf2 gene product, ODF2/cenexin, is essential for both ciliogenesis and the formation of the distal and subdistal appendages on centrioles, which become basal bodies. We examined the effects of Odf2 deletion constructs on ciliogenesis in Odf2-knockout F9 cells. Electron microscopy revealed that ciliogenesis and transition fiber formation required the ODF2/cenexin fragment containing amino acids (aa) 188–806, whereas basal foot formation required aa 1–59 and 188–806. These sequences also formed distal and subdistal appendages, respectively, indicating that the centriole appendages are molecularly analogous to those on basal bodies. We used the differential formation of appendages by Odf2 deletion constructs to study the incorporation and function of molecules associated with each appendage type. We found that transition fibers and distal appendages were required for ciliogenesis and subdistal appendages stabilized the centrosomal microtubules.  相似文献   

5.
Basal body replication and ciliogenesis in Tokophrya infusionum were studied in synchronized cultures. Basal body replication occurs during the 1st hr of reproduction, which in Tokophrya is by internal budding. The number of basal bodies increases from about 20 to over 300 within this period. New basal bodies develop in association with mature basal bodies; they are formed at right angles to the mature basal body as short "probasal" bodies, which elongate, slant upward, become parallel to the mature basal body, and elongate to the mature size. Ciliogenesis occurs only during reproduction; the nonreproducing adult is not ciliated, and has only 18–25 barren basal bodies. Cilia first appear as short bulges above the basal body. The axonemal structure is incomplete at first, with one or both central microtubules absent, and occasionally the B fibers of the outer doublets are missing. Several accessory fibers are associated with the basal bodies, both in the adult and during reproduction. One of the fibers appears only after the cilia have sprouted. The scheme of basal body replication and ciliogenesis in Tokophrya is compared to that reported in other organisms, and the role of the accessory fibers is discussed.  相似文献   

6.
The small GTPase Ran and the importin proteins regulate nucleocytoplasmic transport. New evidence suggests that Ran GTP and the importins are also involved in conveying proteins into cilia. In this study, we find that Ran GTP accumulation at the basal bodies is coordinated with the initiation of ciliogenesis. The Ran-binding protein 1 (RanBP1), which indirectly accelerates Ran GTP → Ran GDP hydrolysis and promotes the dissociation of the Ran/importin complex, also localizes to basal bodies and cilia. To confirm the crucial link between Ran GTP and ciliogenesis, we manipulated the levels of RanBP1 and determined the effects on Ran GTP and primary cilia formation. We discovered that RanBP1 knockdown results in an increased concentration of Ran GTP at basal bodies, leading to ciliogenesis. In contrast, overexpression of RanBP1 antagonizes primary cilia formation. Furthermore, we demonstrate that RanBP1 knockdown disrupts the proper localization of KIF17, a kinesin-2 motor, at the distal tips of primary cilia in Madin-Darby canine kidney cells. Our studies illuminate a new function for Ran GTP in stimulating cilia formation and reinforce the notion that Ran GTP and the importins play key roles in ciliogenesis and ciliary protein transport.  相似文献   

7.
Electron microscopy shows that the pharyngeal lining of the larval lamprey Petromyzon marinus is a structurally complex epithelial system that can be separated into eight epithelial types: gill lamellar, gill interlamellar, goblet cell, protective, terminal (taste) bud, preciliated, ciliated in tracts, and ciliated in grooves. Furthermore, these epithelial types encompass at least sixteen different cell types based on ultrastructure and, in some cases, correlative histochemistry (PAS, Alcian blue). Common to nearly all the epithelial types are basal cells and intermediate cells. These two cell types are seen as undifferentiated. Among mature cells, structural specialization as proceeded in three directions: (1) elaboration of mitochondria, probably related to molecular transport (ion-uptake cells, chloride cells); (2) ciliogenesis (preciliated and ciliated cell types); and (3) production of mucous secretory granules (mucous-platelet cells, goblet cells, superficial protective cells, columnar mucous cells, “cobblestone” cells, and marginal and dark cells in the terminal buds). Many of the functions of the cell types relate to the process of suspension feeding in this animal.  相似文献   

8.
SYNOPSIS. Thin sections of the following stages of Trypanosoma avium were examined in the electron microscope: Trypomastigote forms from the blood of a bird, large epimastigote forms developing from the former after 2 hours in vitro, small epimastigote and metacyclic trypomastigote forms developing after longer periods of cultivation in vitro. The general structure of all stages was similar to that which is already well known for the genus, with the following points being of particular interest: (1) In the large trypomastigote and epimastigote forms, and possibly also in the smaller forms, the flagellar sheath was attached to the pellicle, at least in places. In the large trypomastigote forms, this resulted in the drawing out of a “fin” or ridge of cytoplasm, particularly in the mid-region of the body, to form a true undulating membrane. (2) At least some of the individuals in the blood of a bird have 2 basal bodies, one of which is aflagellate, altho these individuals rarely if ever divide. The large epimastigote forms into which they transform in vitro develop 4 basal bodies (2 flagellate and 2 aflagellate) before dividing. (3) The chondriome is well-developed in all stages, extending thruout the body, even to the tip of the elongated posterior end of the form in the avian host. (4) A short cytostome, leading from the flagellar pocket, was seen in the hematozoic (blood-inhabiting) trypomastigote form but not in other stages. (5) It is suggested that the forward movement of the kinetoplast and basal body during the transformation from trypomastigote to epimastigote form is mediated by localized cytoplasmic movement, resulting in the “rolling-up” of the organism's hind end. It is further suggested that protein synthesis is reduced or even suppressed entirely in the small epi- and trypomastigote forms appearing at the end of the developmental cycle in vitro or in the insect host, such synthesis recommencing rapidly after re-entry into the vertebrate.  相似文献   

9.
10.
In quail oviduct epithelium, as in all metazoan and protozoan ciliated cells, cilia beat in a coordinated cycle. They are arranged in a polarized pattern oriented according to the anteroposterior axis of the oviduct and are most likely responsible for transport of the ovum and egg white proteins from the infundibulum toward the uterus. Orientation of ciliary beating is related to that of the basal bodies, indicated by the location of the lateral basal foot, which points in the direction of the active stroke of ciliary beating. This arrangement of the ciliary cortex occurs as the ultimate step in ciliogenesis and following the oviduct development. Cilia first develop in a random orientation and reorient later, simultaneously with the development of the cortical cytoskeleton. In order to know when the final orientation of basal bodies and cilia is determined in the course of oviduct development, microsurgical reversal of a segment of the immature oviduct was performed. Then, after hormone-induced development and ciliogenesis, ciliary orientation was examined in the inverted segment and in normal parts of the ciliated epithelium. In the inverted segment, orientation was reversed, as shown by a video recording of the direction of effective flow produced by beating cilia, by the three-dimensional bending forms of cilia immobilized during the beating cycle and screened by scanning electron microscopy, and by the position of basal body appendages as seen in thin sections by transmission electron microscopy. These results demonstrate that basal body and ciliary orientation are irreversibly determined prior to development by an endogenous signal present early in the cells of the immature oviduct, transmitted to daughter cells during the proliferative phase and expressed at the end of ciliogenesis.  相似文献   

11.
The ultrastructure of four stages in the development of the vitelline cell of Schistosoma mansoni has been described, and the effect of different regimes of Astiban on the morphology of these cells was investigated. The drug had a highly selective action, rapidly destroying those cells at a stage of granular endoplasmic reticulum development, had a less immediate effect on the “mature” cells, and had no apparent effect on the first stages in development. These cells persisted and were able to continue development when the drug was withdrawn. Acid phosphatase tests at an ultrastructural level showed a considerable increase in activity in the cytosegresomes of affected “mature” cells. The ribosomal complexes present in the “mature” cells represent the early stages of cytosegresome formation, and these cytosegresomes increased in number in affected “mature” cells. X-ray analysis of both araldite and cryosections in the transmission electron microscope revealed a concentration of the element antimony in the cytosegresomes and vitelline droplets. On this basis, it is suggested that cytosegresomes play a role in drug sequestration by the vitelline cells.  相似文献   

12.
Airway multiciliated epithelial cells play crucial roles in the mucosal defense system, but their differentiation process remains poorly understood. Mice lacking the basal body component Chibby (Cby) exhibit impaired mucociliary transport caused by defective ciliogenesis, resulting in chronic airway infection. In this paper, using primary cultures of mouse tracheal epithelial cells, we show that Cby facilitates basal body docking to the apical cell membrane through proper formation of ciliary vesicles at the distal appendage during the early stages of ciliogenesis. Cby is recruited to the distal appendages of centrioles via physical interaction with the distal appendage protein CEP164. Cby then associates with the membrane trafficking machinery component Rabin8, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rab8, to promote recruitment of Rab8 and efficient assembly of ciliary vesicles. Thus, our study identifies Cby as a key regulator of ciliary vesicle formation and basal body docking during the differentiation of airway ciliated cells.  相似文献   

13.
The de novo formation of basal bodies in Naegleria gruberi was preceded by the transient formation of a microtubule (MT)-nucleating complex containing gamma-tubulin, pericentrin, and myosin II complex (GPM complex). The MT-nucleating activity of GPM complexes was maximal just before the formation of visible basal bodies and then rapidly decreased. The regulation of MT-nucleating activity of GPM complexes was accomplished by a transient phosphorylation of the complex. Inhibition of dephosphorylation after the formation of basal bodies resulted in the formation of multiple flagella. 2D-gel electrophoresis and Western blotting showed a parallel relationship between the MT-nucleating activity of GPM complexes and the presence of hyperphosphorylated gamma-tubulin in the complexes. These data suggest that the nucleation of MTs by GPM complexes precedes the de novo formation of basal bodies and that the regulation of MT-nucleating activity of GPM complexes is essential to the regulation of basal body number.  相似文献   

14.
One fundamental role of the centriole in eukaryotic cells is to nucleate the growth of cilia. The unicellular alga Chlamydomonas reinhardtii provides a simple genetic system to study the role of the centriole in ciliogenesis. Wild-type cells are biflagellate, but “uni” mutations result in failure of some centrioles (basal bodies) to assemble cilia (flagella). Serial transverse sections through basal bodies in uni1 and uni2 single and double mutant cells revealed a previously undescribed defect in the transition of triplet microtubules to doublet microtubules, a defect correlated with failure to assemble flagella. Phosphorylation of the Uni2 protein is reduced in uni1 mutant cells. Immunogold electron microscopy showed that the Uni2 protein localizes at the distal end of the basal body where microtubule transition occurs. These results provide the first mechanistic insights into the function of UNI1 and UNI2 genes in the pathway mediating assembly of doublet microtubules in the axoneme from triplet microtubules in the basal body template.  相似文献   

15.
Cilia on the ventral surface of the hypotrich ciliate Euplotes are clustered into polykinetids or compound ciliary organelles, such as cirri or oral membranelles, used in locomotion and prey capture. A single polykinetid may contain more than 150 individual cilia; these emerge from basal bodies held in a closely spaced array within a scaffold or framework structure that has been referred to as a basal‐body “cage”. Cage structures were isolated free of cilia and basal bodies; the predominant component of such cages was found on polyacrylamide gels to be a 45‐kDa polypeptide. Antisera were raised against this protein band and used for immunolocalizations at the light and electron microscope levels. Indirect immunofluorescence revealed the 45‐kDa polypeptide to be localized exclusively to the bases of the ventral polykinetids. Immunogold staining of thin sections of intact cells further localized this reactivity to filaments of a double‐layered dense lattice that appears to link adjoining basal bodies into ordered arrays within each polykinetid. Scanning electron microscopy of isolated cages reveals the lower or “basal” cage layer to be a fine lacey meshwork supporting the basal bodies at their proximal ends; adjoining basal bodies are held at their characteristic spacing by filaments of an upper or “medial” cage layer. The isolated cage thus resembles a miniature test‐tube rack, able to accommodate varying arrangements of basal‐body rows, depending on the particular type of polykinetid. Because of its clear and specific localization to the basal‐body cages in Euplotes, we have termed this novel 45‐kDa protein “cagein”.  相似文献   

16.
Development of cilia in embryos of the turbellarian Macrostomum   总被引:3,自引:3,他引:0  
Seth Tyler 《Hydrobiologia》1981,84(1):231-239
Electron microscopy of Macrostomum hystricinum raised in culture shows that ciliogenesis in the worm's epidermal blastomeres begins in embryos 39–41 h old with kinetosomal and de novo genesis of presumptive basal bodies, which are morphologically distinguishable from centrioles of the mitotic apparatus, and proceeds by the migration of basal bodies to the apical plasma membrane of the cells and their production there of ciliary axonemes by an age of 51–53 h when the bastomeres emerge between yolk cells on the embryo's surface. Ciliogenesis continues throughout development with the addition of cilia virtually one by one to the expanding epidermal cells' surfaces. At no time in ciliogenesis are stages seen that might show derivation of these multiciliated cells from the primitive monociliated cell type presumably present in the ancestors of the Turbellaria.  相似文献   

17.
The parasitic phase female K. isopodicola possesses a ciliated epidermis of polyhedral cells. Adjacent lateral plasma membranes are separated at intervals creating intercellular spaces. Epidermal cilia are anchored by a horizontal rootlet, opposite which a spur projects from the basal body, and a narrow vertical rootlet. The cytoplasm contains coated vesicles, and coated pits lie between microvilli. Large granular and vesicular bodies (rhabdoids) are scattered through the epidermal epithelium; in the epidermis of the encapsulated larva, granular rhabdoids are densely packed and slender, more compact bodies also occur. The compact, granular and vesicular bodies are probably morphological variants of the same epidermal structures, suggested to undergo sequential changes accomplished in later stages by lysosomal activity. Morphologically similar epidermal bodies are found in triclads. They are also characteristic of the parasitic genus Urastoma, which shares other ultrastructural features with K. isopodicola. The Neodermata may have arisen from parasitic turbellarian forms, at a more “primitive” level of organization than ancestors of the contemporary Rhabdocoela.  相似文献   

18.
Regrowth from wounded stipe explants of Sargassum can be divided into four stages based on cytological changes. The first stage involves changes associated with the wound reactions and the formation of a wound epidermis. The second stage includes the formation of a well defined medullary pit with meristematically active cells around its periphery. Several “bud primordia” are also formed which begin to grow by cell division towards the wound surface. The third stage involves a period of internal tissue differentiation in the “bud primordia” such that mitotic activity is localized in the bud tip and the basal cells grow by cell elongation. The fourth stage marks a major change in the morphology of the regeneration branch from a tubular structure to that of a flattened blade. This change in morphology is preceded by the formation of an apical pit around which the flattened growth appears to be organized.  相似文献   

19.
Myosin has been localized during ciliogenesis of quail oviduct by immunocytochemistry (immunofluorescence, immunoperoxidase, immunogold labeling) using a previously characterized monoclonal antibody. In ovariectomized quail oviduct many undifferentiated epithelial cells present a primary cilium arising from one of the diplosome centrioles. Myosin is associated with material located between the two centrioles. In contrast, in estrogen-stimulated quail oviduct, the material preceding the procentioles is never labeled. Basal bodies become labeled just before their migration toward the apical plasma membrane. During the anchoring phase, the labeling is mainly associated with the basal feet. In mature ciliated cells, myosin appears associated with an apical network embedding the basal bodies. This network is connected to a myosin-rich belt associated with the apical junctional complex which differentiates at the beginning of centriologenesis. The association of myosin with migrating basal bodies suggests that myosin could be involved in basal body movements.  相似文献   

20.
Oral-facial-digital type I syndrome (OFDI) is a human X-linked dominant-male-lethal developmental disorder caused by mutations in the OFD1 gene. Similar to other inherited disorders associated to ciliary dysfunction OFD type I patients display neurological abnormalities. We characterized the neuronal phenotype that results from Ofd1 inactivation in early phases of mouse embryonic development and at post-natal stages. We determined that Ofd1 plays a crucial role in forebrain development, and in particular, in the control of dorso-ventral patterning and early corticogenesis. We observed abnormal activation of Sonic hedgehog (Shh), a major pathway modulating brain development. Ultrastructural studies demonstrated that early Ofd1 inactivation results in the absence of ciliary axonemes despite the presence of mature basal bodies that are correctly orientated and docked. Ofd1 inducible-mediated inactivation at birth does not affect ciliogenesis in the cortex, suggesting a developmental stage-dependent role for a basal body protein in ciliogenesis. Moreover, we showed defects in cytoskeletal organization and apical-basal polarity in Ofd1 mutant embryos, most likely due to lack of ciliary axonemes. Thus, the present study identifies Ofd1 as a developmental disease gene that is critical for forebrain development and ciliogenesis in embryonic life, and indicates that Ofd1 functions after docking and before elaboration of the axoneme in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号