首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
T Yagi 《Microbios》1992,70(283):93-102
The accumulation of glycerol and inorganic ions as it related to osmotic pressure, and the regulation of intracellular osmotic pressure in a salt-tolerant yeast, Zygosaccharomyces rouxii, were examined for several hours after salt stress. Intracellular contents of glycerol increased for up to 6 h in media supplemented with 1 M and 2 M NaCl and did not increase in medium containing 3 M NaCl. Intracellular contents of Na+ and Cl- reached a maximum value within 1 and 3 h, respectively, in all NaCl-containing media and increases were proportional to the concentration of NaCl in the medium. As glycerol was accumulated in cells, the intracellular contents of Na+ and Cl- gradually decreased in media containing 1 M and 2 M NaCl. After salt stress, cell volume decreased within 1 h and the original volume was re-established for 3 to 6 h in media with 1 M and 2 M NaCl but not in medium with 3 M NaCl. Intracellular concentrations of solutes, which were calculated from the total contents of glycerol and inorganic ions and the cell volume, became almost equivalent to the external osmotic pressure within 1 h after salt stress. Experiments using various inhibitors showed that a large amount of ATP was required not only for the synthesis and accumulation of glycerol but also for the exclusion of Na+ and Cl- from cells under salt-stressed conditions.  相似文献   

2.
AIMS: To identify and compare the volatile compounds associated with maize dough samples prepared by spontaneous fermentation and by the use of added starter cultures in Ghana. METHODS AND RESULTS: The starter cultures examined were Lactobacillus fermentum, Saccharomyces cerevisiae and Candida krusei. For identification of aroma volatiles, extracts by the Likens-Nickerson simultaneous distillation and extraction technique were analysed by gas chromatography-mass spectrometry (GC-MS) and using a trained panel of four judges by GC-Olfactometry (GC-sniffing). Compounds identified by GC-MS in maize dough samples after 72 h of fermentation included 20 alcohols, 22 carbonyls, 11 esters, seven acids, a furan and three phenolic compounds. Of the total 64 volatile compounds, 51 were detected by GC-sniffing as contributing to the aroma of the different fermented dough samples. Spontaneously fermented maize dough was characterized by higher levels of carbonyl compounds while fermentations with added L. fermentum recorded the highest concentration of acetic acid. S. cerevisiae produced higher amounts of fusel alcohols and increasing levels of esters with fermentation time and C. krusei showed similarity to L. fermentum with lower levels of most volatiles identified. CONCLUSION: The present study has given a detailed picture of the aroma compounds in fermented maize and demonstrated that the predominant micro-organisms in fermented maize dough can be used as starter cultures to modify the aroma of fermented maize dough. SIGNIFICANCE AND IMPACT OF THE STUDY: The study has documented the advantage of using starter cultures in African traditional food processing and provided a scientific background for introducing better controlled fermentations.  相似文献   

3.
Abstract The amounts of mRNA and protein of plasma membrane proton-ATPase were measured in the salt-tolerant yeast Zygosaccharomyces rouxii by Northern and Western blot analyses. Although their amounts were independent of growth phase, their synthesis were induced when yeast cells were grown in the presence of NaCl or were subjected to NaCl shock. This finding was consistent with our previous result that plasma membrane proton-ATPase activity was elevated in Z. rouxii cells grown in medium containing high concentrations of NaCl.  相似文献   

4.
Physiological changes induced by chromium stress in plants: an overview   总被引:1,自引:0,他引:1  
This article presents an overview of the mechanism of chromium (Cr) stress in plants. Toxic effects of Cr on plant growth and development depend primarily on its valence state. Cr(VI) is highly toxic and mobile whereas Cr(III) is less toxic. Cr-induced oxidative stress involves induction of lipid peroxidation in plants that cause severe damage to cell membranes which includes degradation of photosynthetic pigments causing deterioration in growth. The potential of plants with the adequacy to accumulate or to stabilize Cr compounds for bioremediation of Cr contamination has gained engrossment in recent years.  相似文献   

5.
The effects of cadmium on physiological and ultrastructural characteristics were evaluated in 6-d-old seedlings of two Brassica napus L. cultivars Zheda 619 and ZS 758. Results show that Cd at lower concentration (100 μM) stimulated the seedling growth but at higher concentration (500 μM) inhibited the growth of both cultivars, decreased content of photosynthetic pigments, activities of antioxidant enzymes, and increased the content of malondialdehyde and reactive oxygen species. Cd content in different parts of seedlings was higher in ZS 758 than in Zheda 619. Electron micrographs illustrated that 500 μM Cd severely damaged the leaf and root tip cells of both cultivars. Under Cd stress, the size and number of starch grains, plastoglobuli, and lipid bodies in the chloroplasts increased. In the root tip cells, enlarged vacuoles, diffused cell walls, and undeveloped mitochondria were detected.  相似文献   

6.
When exponentially growing Saccharomyces cerevisiae was transferred from a normal high water activity growth medium (aw 0.997) to a medium containing 8% NaCl low water activity growth medium (aw 0.955), glycerol accumulation during the first eight hours of the adaptation was both retarded and greatly diminished in magnitude. Investigation of the underlying reasons for the slow onset of glycerol accumulation revealed that not only was overall glycerol production reduced by salt transfer, but also the rates of ethanol production and glucose consumption were reduced. Measurement of glycolytic intermediates revealed an accumulation of glucose-6-phosphate, fructose-6-phosphate, fructose 1,6 bisphosphate and phosphoenolpyruvate in S. cerevisiae 3 to 4 h after transfer to salt, suggesting that one or more glycolytic enzymes were inhibited. Potassium ions accumulated in S. cerevisiae after salt transfer and reached a maximum about 6 h after transfer, whereas the sodium ion content increased progressively during the adaptation period. The trehalose content also increased in adapting cells. It is suggested that inhibition of glycerol production during the initial period of adaptation could be due to either the inhibition of glycerol-3-phosphate dehydrogenase by increased cation content or the inhibitin of glycolysis, glycerol being produced glycolytically in S. cerevisiae. The increased accumulation of glycerol towards the end of the 8-h period suggests that the osmoregulatory response of S. cerevisiae involves complex sets of adjustments in which inhibition of glycerol-3-phosphate dehydrogenase must be relieved before glycerol functions as a major osmoregulator.  相似文献   

7.
8.
Several non-lethal deletions of the broad host range plasmid RK2 (molecular weight of 37.6 . 10(6) have been produced in vitro. The method employed relied on the single HindIII restriction nuclease site in RK2 and the ability of phage Mu to insert and thereby add new HindIII restriction sites at various positions in the plasmid. The deleted plasmids have in each case lost kanamycin (Km) resistance, and in two cases are defective in self-transmissibility. The method used to reduce the size of the RK2 plasmid also results in the cloning of each of the two ends of the Mu phage DNA on the plasmid derivatives.  相似文献   

9.
10.
11.
Abstract The relationship between the intracellular concentration of glycerol and the initiation of growth under salt-stressed conditions in the salt-tolerant yeast Zygosaccharomyces rouxii was studied. The results demonstrated that the accumulation of a definite intracellular concentration of glycerol is required prior to the initiation of growth under NaCl-stressed conditions. The initiation of growth in 3 M and 3.5 M NaCl media started at low intracellular concentrations such as 0.51 and 1.17 mol/l cell volume. Similar results were obtained under KCl- and MgCl2-stressed conditions. However, Z. rouxii was unable to grow under LiCl-stressed conditions, though it accumulated glycerol to the level required for the initiation of growth.  相似文献   

12.
Halophilic bacteria respond to salt stress by regulating the cytosolic pools of organic solutes to achieve osmotic equilibrium. In order to understand the metabolic regulation of these organic solutes, for the first time, we have investigated the effect of salt on growth and biochemical changes in four major moderately halophilic bacterial strains isolated from a saltern region of the Kumta coast, India. The strains under study were Halomonas hydrothermalis VITP9, Bacillus aquimaris VITP4, Planococcus maritimus VITP21, and Virgibacillus dokdonensis VITP14, which exhibited similar salt tolerance (0% to 10% w/v NaCl) with optimal growth at 5% w/v NaCl. Biochemical analysis showed that the total intracellular organic solutes increased significantly with increasing NaCl concentration in the growth medium, and the compositions of the solutes were dependent on the type of strain and also on the nutrient richness of the growth medium. Glutamic acid levels increased in all the strains under salt stress, indicating the significance of glutamic acid as the anionic counterpart of K+/Na+ ions and precursor for other synthesized nitrogenous osmolytes. Though initial studies were performed with thin-layer chromatography, mass spectrometry was used to identify the major solutes accumulated by the strains under salt stress, such as proline (VITP4), ectoine (VITP14 and VITP9), and sugars (VITP21) under minimal medium and glycine betaine (by all the strains under study) under complex growth medium conditions. Such comparative study on the stress-dependent metabolic differences of different microbes, under identical experimental condition, helps to identify possible bacterial sources for the production of industrially important solutes.  相似文献   

13.
Summary Sodium bromide was applied in vitro to mouse neuroblastoma cells of different ages for short and long periods (2h to 10 days). The changes observed light-and-electron microscopically were similar to those described earlier after GABA treatment. Coated vesicles proliferated and originated by pinching off from the Golgi complex and from the rough endoplasmic reticulum. Numerous coated vesicles were continuous with the plasma membrane, especially near zones in which electron-dense material aggregated at the inner aspect of the plasmalemma. Small invaginations, similar in ultrastructure to coated vesicles, were also formed. It is unclear whether the coated vesicles or the dense plasmalemma invaginations contribute to the undercoating by fusing with the adjacent electron-dense plasma membrane. There was a distinct increase in the number and area of specialized contacts (intermediate junctions and zonulae adhaerentes) between cells and their processes. A floccular or filamentous electron-dense substance varying in amount and appearance was occasionally seen between the contacting membranes. Varicosities of terminal swellings of cell processes contained vesicles of variable size, shape and density, and also profiles of the smooth endoplasmic reticulum. Under the influence of sodium bromide, similar to the effect of GABA, mitochondria appeared within the varicosities, and primitive contacts (intermediate junctions) were formed between the terminal swellings and potential postsynaptic elements, which were absent in controls.Additionally, dense-core vesicles proliferated and aggregated at the cell periphery. They were often arranged linearly below the plasma membranes of perikarya and processes, and surrounded by a highly electron-dense substance. The similarity of the present findings to those obtained after GABA treatment and their relation to synaptogenesis are discussed.  相似文献   

14.
In Saccharomyces cerevisiae pseudohyphae formation may be triggered by nitrogen deprivation and is stimulated by cAMP. It was observed that even in a medium with an adequate nitrogen supply, cAMP can induce pseudohyphal growth when S. cerevisiae uses ethanol as carbon source. This led us to investigate the effects of the carbon source and of a variety of stresses on yeast morphology. Pseudohyphae formation and invasive growth were observed in a rich medium (YP) with poor carbon sources such as lactate or ethanol. External cAMP was required for the morphogenetic transition in one genetic background, but was dispensable in strain 1278b which has been shown to have an overactive Ras2/cAMP pathway. Pseudohyphal growth and invasiveness also took place in YPD plates when the yeast was subjected to different stresses: a mild heat-stress (37 °C), an osmotic stress (1 m NACl), or addition of compounds which affect the lipid bilayer organization of the cell membrane (aliphatic alcohols at 2%) or alter the glucan structure of the cell wall (Congo red). We conclude that pseudohyphal growth is a physiological response not only to starvation but also to a stressful environment; it appears to require the coordinate action of a MAP kinase cascade and a cAMP-dependent pathway.  相似文献   

15.
Chlorophyll and anthocyanin contents provide a valuable indicator of the status of a plant’s physiology, but to be more widely utilized it needs to be assessed easily and non‐destructively. This is particularly evident in terms of assessing and exploiting germplasm for plant‐breeding programs. We report, for the first time, experiments with Fragaria chiloensis(L.)Duch. and the estimation of the effects of response to salinity stress(0, 30, and 60 mmol NaCl/L) in terms of these pigments content and gas exchange. It is shown that both pigments(which interestingly, themselves show a high correlation) give a good indication of stress response. Both pigments can be accurately predicted using spectral reflectance indices(SRI);however, the accuracy of the predictions was slightly improved using multilinear regression analysis models and genetic algorithm analysis. Specifically for chlorophyll content, unlike other species, the use of published SRI gave better indications ofstress response than Normalized Difference Vegetation Index.The effect of salt on gas exchange is only evident at the highest concentration and some SRI gave better prediction performance than the known Photochemical Reflectance Index. This information will therefore be useful for identifying tolerant genotypes to salt stress for incorporation in breeding programs.  相似文献   

16.
Chlorophyll and anthocyanin contents provide a valuable indicator of the status of a plant's physiology, but to be more widely utilized it needs to be assessed easily and non‐destructively. This is particularly evident in terms of assessing and exploiting germplasm for plant‐breeding programs. We report, for the first time, experiments with Fragaria chiloensis(L.)Duch. and the estimation of the effects of response to salinity stress(0, 30, and 60 mmol NaCl/L) in terms of these pigments content and gas exchange. It is shown that both pigments(which interestingly, themselves show a high correlation) give a good indication of stress response. Both pigments can be accurately predicted using spectral reflectance indices(SRI);however, the accuracy of the predictions was slightly improved using multilinear regression analysis models and genetic algorithm analysis. Specifically for chlorophyll content, unlike other species, the use of published SRI gave better indications ofstress response than Normalized Difference Vegetation Index.The effect of salt on gas exchange is only evident at the highest concentration and some SRI gave better prediction performance than the known Photochemical Reflectance Index. This information will therefore be useful for identifying tolerant genotypes to salt stress for incorporation in breeding programs.  相似文献   

17.
Salinity is an important limiting factor in plant growth and development. We have cloned a catalytic subunit of the sugar beet protein kinase CK2 (BvCKA2) by functional expression in yeast of a NaCl-induced cDNA library. BvCKA2 was able to increase the yeast tolerance to NaCl and to functionally complement the cka1 cka2 yeast double mutant upon over-expression. Southern blot analysis indicated that, in sugar beet, the BCKA2 gene is a member of a multigene family. The mRNA levels of BvCKA2 were up-regulated in response to NaCl stress which suggests that protein kinase CK2 may be involved in the plant response to salt stress.  相似文献   

18.
Saccharomyces boulardii is a probiotic used to prevent or treat antibiotic-induced gastrointestinal disorders and acute enteritis. For probiotics to be effective they must first be able to survive the harsh gastrointestinal environment. In this work, we show that S. boulardii displayed the greatest tolerance to simulated gastric environments compared with several Saccharomyces cerevisiae strains tested. Under these conditions, a pH 2.0 was the main factor responsible for decreased cell viability. Importantly, the addition of low concentrations of sodium chloride (NaCl) protected cells in acidic conditions more effectively than other salts. In the absence of S. boulardii mutants, the protective effects of Na+ in yeast viability in acidic conditions was tested using S. cerevisiae Na+-ATPases ( ena1-4 ), Na+/H+ antiporter ( nha1 Δ) and Na+/H+ antiporter prevacuolar ( nhx1 Δ) null mutants, respectively. Moreover, we provide evidence suggesting that this protection is determined by the plasma membrane potential, once altered by low pH and low NaCl concentrations. Additionally, the absence or low expression/activity of Ena proteins seems to be closely related to the basal membrane potential of the cells.  相似文献   

19.
Recent findings in our laboratory suggested that in citrus cells the salt induction of phospholipid hydroperoxide glutathione peroxidase, an enzyme active in cellular antioxidant defense, is mediated by the accumulation of hydroperoxides. Production of hydroperoxides occurs as a result of non-enzymatic auto-oxidation or via the action of lipoxygenases (LOXs). In an attempt to resolve the role of LOX activity in the accumulation of peroxides we analyzed the expression of this protein under stress conditions and in cells of Citrus sinensis L. differing in sensitivity to salt. Lipoxygenase expression was induced very rapidly only in the salt-tolerant cells and in a transient manner. The induction was specific to salt stress and did not occur with other osmotic-stress-inducing agents, such as polyethylene glycol or mannitol, or under hot or cold conditions, or in the presence of abscisic acid. The induction was eliminated by the antioxidants dithiothreitol and kaempferol, thus once more establishing a correlation between salt and oxidative stresses. Analyses of both in vitro and in vivo products of LOX revealed a specific 9-LOX activity, and a very fast reduction of the hydroperoxides to the corresponding hydroxy derivatives. This suggests that one of the metabolites further downstream in the reductase pathway may play a key role in triggering defense responses against salt stress. Received: 3 February 2000 / Accepted: 13 June 2000  相似文献   

20.
Growth rate, mineral composition and changes in polyamine concentration induced in response to salinity were studied in six crop species: spinach, lettuce, bean, pepper, beetroot and tomato. Salinity decreased growth rate, but sensitivity differed amongst the species: pepper being the most sensitive, followed by bean, tomato, lettuce and spinach, with beetroot being the most tolerant. The increase of Na+ and total cation with salinity in shoots was the highest in spinach and beetroot, the most tolerant species, while in pepper it was the lowest. Changes in putrescine (Put) concentration in shoots were related to salinity tolerance (increased in the most sensitive), while changes in spermidine (Spd; decreases) and spermine (Spm; increases) were similar with most species, except for pepper in which salinity strongly increased Put, Spd and Spm. Therefore, total polyamine concentration increased in pepper shoot, while it decreased in the other species. Thus, results show that Put accumulation was a consequence of salt stress in the most sensitive species, while salt tolerant species (beetroot) showed little change in polyamine concentration, and higher concentration in both Na+ and total cations. The role of polyamines or cation increased concentration after saline treatment in species with different salt tolerance is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号