首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
An internal RNA standard proved less suitable in bacterial gene expression experiments. We therefore developed a method for simultaneous RNA and gDNA (genomic DNA) isolation from in vitro and in vivo samples containing staphylococci and combined it with quantitative PCR. The reliability of gDNA for bacterial quantification and for standardisation in gene expression experiments was evaluated. Quantitative PCR proves equivalent to quantitative culture for in vitro samples, and superior for in vivo samples. In gene expression experiments, gDNA permits a good standardisation for the initial amount of bacteria. The average interassay variability of the in vitro expression is 20.1%. The in vivo intersample variability was 73.3%. This higher variability can be attributed to the biological variation of gene expression in vivo. This method permits exact quantification of the number of bacteria and the expression of genes in staphylococci in vivo (e.g., in biofilms, evolution in time) and in vitro.  相似文献   

3.
In Saccharomyces cerevisiae, the bud site selection of diploid cells is regulated by at least four persistent landmarks, Bud8p, Bud9p, Rax1p, and Rax2p. Bud8p and Bud9p are essential for the establishment of bipolar budding and localize mainly to the distal and the proximal poles, respectively. Their subcellular localizations are regulated through interaction with Rax1p/Rax2p. We investigated when and where Bud8p and Bud9p physically interact with Rax2p in vivo using a split-GFP method. GFP fluorescence showed that Bud8p physically interacted with Rax2p at the proximal or distal pole in unbudded cells; a physical interaction was also observed at the opposite pole to the growing bud in mother cells with a large-size bud. Bud9p physically interacted with Rax2p at the birth scar in budded mother cells. These observations suggest that the interaction of Rax2p with Bud8p and Bud9p may contribute to the translocation of bipolar landmarks to the correct sites.  相似文献   

4.
Proteins designated for peroxisomal protein import harbor one of two common peroxisomal targeting signals (PTS). In the yeast Saccharomyces cerevisiae, the oleate-induced PTS2-dependent import of the thiolase Fox3p into peroxisomes is conducted by the soluble import receptor Pex7p in cooperation with the auxiliary Pex18p, one of two supposedly redundant PTS2 co-receptors. Here, we report on a novel function for the co-receptor Pex21p, which cannot be fulfilled by Pex18p. The data establish Pex21p as a general co-receptor in PTS2-dependent protein import, whereas Pex18p is especially important for oleate-induced import of PTS2 proteins. The glycerol-producing PTS2 protein glycerol-3-phosphate dehydrogenase Gpd1p shows a tripartite localization in peroxisomes, in the cytosol, and in the nucleus under osmotic stress conditions. We show the following: (i) Pex21p is required for peroxisomal import of Gpd1p as well as a key enzyme of the NAD+ salvage pathway, Pnc1p; (ii) Pnc1p, a nicotinamidase without functional PTS2, is co-imported into peroxisomes by piggyback transport via Gpd1p. Moreover, the specific transport of these two enzymes into peroxisomes suggests a novel regulatory role for peroxisomes under various stress conditions.  相似文献   

5.
6.
Subcellular localization of A and B Nm23/NDPK subunits   总被引:9,自引:0,他引:9  
The human Nm23-H1/NDPK A and Nm23-H2/NDPK B encode for two subunits of nucleoside diphosphate kinase--a ubiquitous enzyme that transfers the terminal phosphates from ATP to (d)NDPs. Although having an 88% amino acid sequence identity and an already assigned biochemical role in the cell, the two subunits appear to have additional and distinctive cell functions. In particular, both subunits have been reported to be involved in tumor progression and metastasis. The aim of this study was to determine the specific, and potentially distinct, localizations of both subunits in tumor cells of different origin and differentiation and therefore to search for a possible link between their localization and the stage of disease. We used the GFP reporter system to analyze the ectopic expression of GFP-Nm23 proteins in head and neck tumor cell lines by fluorescent microscopy techniques. Our experiments revealed that GFP-fused Nm23-H1 and -H2 proteins display the same localization in transfected cells, regardless of their origin and differentiation status. The proteins are principally found in the cytosol and the endoplasmic reticulum. Moreover, some cells exhibit nuclear staining, which appears to be cell cycle-dependent.  相似文献   

7.
Both neuronal and endocrine cells contain secretory vesicles that store and release neurotransmitters and peptides. Neuronal cells release their secretory material from both small synaptic vesicles and large dense-core vesicles (LDCVs), whereas endocrine cells release secretory products from LDCVs. Neuronal small synaptic vesicles are known to express three integral membrane proteins: 65,000 calmodulin-binding protein (65-CMBP) (p65), synaptophysin (p38), and SV2. A controversial question surrounding these three proteins is whether they are present in LDCV membranes of endocrine and neuronal cells. Sucrose density centrifugation of adrenal medulla was performed to study and compare the subcellular distribution of two of these small synaptic vesicle proteins (65-CMBP and synaptophysin). Subsequent immunoblotting and 125I-Protein A binding experiments performed on the fractions obtained from sucrose gradients showed that 65-CMBP was present in fractions corresponding to granule membranes and intact chromaffin granules. Similar immunoblotting and 125I-Protein A binding experiments with synaptophysin antibodies showed that this protein was also present in intact granules and granule membrane fractions. However, an additional membrane component, equilibrating near the upper portion of the sucrose gradient, also showed strong immunoreactivity with anti-synaptophysin and high 125I-Protein A binding activity. In addition, immunoblotting experiments on purified plasma and granule membranes demonstrated that 65-CMBP was a component of both membranes, whereas synaptophysin was only present in granule membranes. Thus, there appears to be a different subcellular localization between 65-CMBP and synaptophysin in the chromaffin cell.  相似文献   

8.
Ingrid Leroy  Alan Diot 《FEBS letters》2010,584(14):3153-3157
Mitochondrial fusion depends on the evolutionary conserved dynamin, OPA1/Mgm1p/Msp1p, whose activity is controlled by proteolytic processing. Since processing diverges between Mgm1p (Saccharomyces cerevisiae) and OPA1 (mammals), we explored this process in another model, Msp1p in Schizosaccharomyces pombe. Generation of the short isoform of Msp1p neither results from the maturation of the long isoform nor correlates with mitochondrial ATP levels. Msp1p is processed by rhomboid and a protease of the matrix ATPase associated with various cellular activities (m-AAA) family. The former is involved in the generation of short Msp1p and the latter in the stability of long Msp1p. These results reveal that Msp1p processing may represent an evolutionary switch between Mgm1p and OPA1.  相似文献   

9.
10.
p27(Kip1R) is an isoform of p27(Kip1), having a distinct C-terminus. The sequences of p27(Kip1R) required for nuclear localization and growth inhibition were determined in HeLa cells using a green fluorescence protein (GFP) as a reporter molecule. Region 153-168 and residues K168 and I169 were determined to play a critical role in the nuclear localization of p27(Kip1R). Aliphatic amino acid was found to be a substitute for the basic residue in the typical nuclear localization signal, while its functional substitution was incomplete, thereby causing a significant cytoplasmic retention of p27(Kip1R). p27(Kip1R) is thus the first example of an atypical bipartite nuclear localization signal with aliphatic amino acid as a functional residue. Despite cytoplasmic retention, p27(Kip1R) inhibited the cell growth as well as p27(Kip1), while GFP alone had no effect. The mutants lacking an N-terminus containing the binding regions for cyclins and cyclin-dependent kinases also showed a significant degree of nuclear localization, but failed to inhibit cell growth. The growth inhibition by p27(Kip1R) as well as p27(Kip1) was thus suggested to originate in the common N-terminal region.  相似文献   

11.
In nutrient-rich, vegetative conditions, the yeast Saccharomyces cerevisiae transports a resident protease, aminopeptidase I (API), to the vacuole by the cytoplasm to vacuole targeting (Cvt) pathway, thus contributing to the degradative capacity of this organelle. When cells subsequently encounter starvation conditions, the machinery that recruited precursor API (prAPI) also sequesters bulk cytosol for delivery, breakdown, and recycling in the vacuole by the autophagy pathway. Each of these overlapping alternative transport pathways is specifically mobilized depending on environmental cues. The basic mechanism of cargo packaging and delivery involves the formation of a double-membrane transport vesicle around prAPI and/or bulk cytosol. Upon completion, these Cvt and autophagic vesicles are targeted to the vacuole to allow delivery of their lumenal contents. Key questions remain regarding the origin and formation of the transport vesicle. In this study, we have cloned the APG9/CVT7 gene and characterized the gene product. Apg9p/Cvt7p is the first characterized integral membrane protein required for Cvt and autophagy transport. Biochemical and morphological analyses indicate that Apg9p/Cvt7p is localized to large perivacuolar punctate structures, but does not colocalize with typical endomembrane marker proteins. Finally, we have isolated a temperature conditional allele of APG9/CVT7 and demonstrate the direct role of Apg9p/Cvt7p in the formation of the Cvt and autophagic vesicles. From these results, we propose that Apg9p/Cvt7p may serve as a marker for a specialized compartment essential for these vesicle-mediated alternative targeting pathways.  相似文献   

12.
13.
Fht1p is involved in the flocculation and heat tolerance machinery of budding yeast Saccharomyces cerevisiae. Despite knowledge of its involvement in those phenotypes, a precise mechanism has yet to be discovered. To this end, we monitored the relationship between subcellular localization of Fht1p and its flocculation or heat tolerance function using newly developed expression vectors with a recombinant green fluorescent protein (GFP; S65T/S147P) of Aequorea victoria added at both the N- and C-terminus of Fht1p. The main fluorescent signal of the GFP tagged with either a wild-type Fht1p or mutants which preserve their flocculation function was detected in the nucleus, whereas signals of functionless mutants were dispersed to the cytoplasm.  相似文献   

14.
The p53 promoter-based green fluorescent protein(GFP)and luciferase reporter gene assayshave been established for detecting DNA damage induced by genotoxic agents.To evaluate the system,NIH3T3 cells transfected with either pHP53-GFP or pMP53-GFP construct were treated with mitomycin or5-fluorouracil.Expression of the GFP reporter gene was significantly and specifically induced in the cellsexposed to mitomycin or 5-fluorouracil.Then we treated NIH3T3 cells harboring pHP53-Luc or pMP53-Luc vector with mitomycin,5-fluorouracil or cisplatin at various concentrations.Similarly,exposure of thecells to these agents with genotoxic potentials resulted in a dose-dependent induction in luciferase reportergene expression.Thus,these in vitro reporter gene assays could provide an ideal system for quick assess-ment or screening of agents with genotoxic potential.  相似文献   

15.
Summary

The expression of Na,K-ATPase isoforms was investigated in human skeletal muscle membranes isolated by subcellular fractionation. The α1, α2, α3 and β1 subunits were detectable in membranes prepared from the human soleus muscle. The α1 subunit was largely detected in a fraction enriched with plasma membranes (PM), its abundance in an Intracellular membrane fraction (IM) accounted for only 4% of that in the PM fraction. No α1 subunits were detected in membranes of sarcoplasmic reticulum (SR) origin. The PM and IM fractions were enriched with α2 subunits which were less abundant in the SR-enriched fraction. The abundance of α2 molecules within the IM fraction was about 75% of that in the PM fraction when the total protein content for the two fractions was taken into account. Immuno-cytochemical studies confirmed the localization of the α1 subunit to the muscle cell surface. The α2 subunit was also found to be present in the cell surface but the observation that α2 immuno-fluorescence was diffusely dispersed throughout the muscle fibre indicated that it was also present intracellularly, consistent with its biochemical localization in the PM and IM membrane fractions. The α3 subunit was detected largely in the PM fraction but the lack of good antibodies to this isoform precluded an analysis of its immunocytochemical localization. The β1 subunit was enriched in the PM fraction but was also detected to a modest extent in the IM. A polyclonal anti-β2 antibody, which reacted positively with both human brain microsomes and rat skeletal muscle membranes, revealed that human skeletal muscles contained no immunoreactive β2 subunits. Our results indicate that the human soleus expresses the α1 and α2 (and possibly the α3) subunits of the Na,K-ATPase and that the activity of these isoforms must be supported by the β1 subunit in this muscle.  相似文献   

16.
The Saccharomyces cerevisiae (Sc) PTS1 import receptor Pex5p is modified by ubiquitin, both in an Ubc4p-dependent and a Pex4p (Ubc10p)-dependent manner. Both of these modifications require the RING domain-containing protein Pex10p in vivo, but the actual role this protein plays in the ubiquitination of Pex5p has so far, remained enigmatic. Here, we report that the RING domain of Pex10p exhibits E3 ligase activity in vitro, in combination with the human E2 enzyme UbcH5a, a homologue of ScUbc4p, but not when ScPex4p was used as an E2 enzyme in the reaction. We have further characterised Pex10p’s E3 ligase activity using mutants designed to disturb this activity and show that Pex10p acts as the E3 ligase for Ubc4p-dependent ubiquitination of Pex5p but not Pex4p-dependent ubiquitination in vivo. These data imply that the two distinct Pex5p modifications require different E3 ligases, as well as different E2 enzymes.  相似文献   

17.
In mammalian cells, the Golgi apparatus is disassembled at the onset of mitosis and reassembled at the end of mitosis. This disassembly-reassembly is generally believed to be essential for the equal partitioning of Golgi into two daughter cells. For Golgi disassembly, membrane fusion, which is mediated by NSF and p97, needs to be blocked. For the NSF pathway, the tethering of p115-GM130 is disrupted by the mitotic phosphorylation of GM130, resulting in the inhibition of NSF-mediated fusion. In contrast, the p97/p47 pathway does not require p115-GM130 tethering, and its mitotic inhibitory mechanism has been unclear. Now, we have found that p47, which mainly localizes to the nucleus during interphase, is phosphorylated on Serine-140 by Cdc2 at mitosis. The phosphorylated p47 does not bind to Golgi membranes. An in vitro assay shows that this phosphorylation is required for Golgi disassembly. Microinjection of p47(S140A), which is unable to be phosphorylated, allows the cell to keep Golgi stacks during mitosis and has no effect on the equal partitioning of Golgi into two daughter cells, suggesting that Golgi fragmentation-dispersion may not be obligatory for equal partitioning even in mammalian cells.  相似文献   

18.
The cyclin-dependent kinase (CDK) inhibitor p21CDKN1A is known to induce cell cycle arrest by inhibiting CDK activity and by interfering with DNA replication through binding to proliferating cell nuclear antigen. Although the molecular mechanisms have been elucidated, the temporal dynamics, as well as the intracellular sites of the activity of p21 bound to cyclin/CDK complexes during cell cycle arrest, have not been fully investigated. In this study we have induced the expression of p21CDKN1A fused to green fluorescent protein (GFP) in HeLa cells, in order to visualize the intracellular localization of the inhibitor during the cell cycle arrest. We show that p21-GFP is preferentially expressed in association with cyclin E in cells arrested in G1 phase, and with cyclin A more than with cyclin B1 in cells arrested in the G2/M compartment. In addition, we show for the first time that p21-GFP colocalizes with cyclin E in the nucleolus of HeLa cells during the G1 phase arrest.O. Cazzalini and P. Perucca contributed equally to this work  相似文献   

19.
Oncogenic p21 protein, encoded by theras-oncogene, that causes malignant transformation of normal cells and many human tumors, is almost identical in sequence to its normal protooncogene-encoded counterpart protein, except for the substitution of arbitrary amino acids for the normally occurring amino acids at critical positions such as Gly 12 and Gin 61. Since p21 is normally activated by the binding of GTP in place of GDP, it has been postulated that oncogenic forms must retain bound GTP for prolonged time periods. However, two multiply substituted p21 proteins have been cloned, neither of which binds GDP or GTP. One of these mutant proteins with Val for Gly 10, Arg for Gly 12, and Thr for Ala 59 causes cell transformation, while the other, similar protein with Gly 10, Arg 12, Val for Gly 13 and Thr 59 does not transform cells. To define the critical conformational changes that occur in the p21 protein that cause it to become oncogenic, we have calculated the low energy conformations of the two multiply substituted mutant p21 proteins using a new adaptation of the electrostatically driven Monte Carlo (EDMC) technique, based on the program ECEPP. We have used this method to explore the conformational space available to both proteins and to compute the average structures for both using statistical mechanical averaging. Comparison of the average structures allows us to detect the major differences in conformation between the two proteins. Starting structures for each protein were calculated using the recently deposited x-ray crystal coordinates for the p21 protein, that was energy-refined using ECEPP, and then perturbed using the EDMC method to compute its average structure. The specific amino acid substitutions for both proteins were then generated into the lowest energy structure generated by this procedure, subjected to energy minimization and then to full EDMC perturbations. We find that both mutant proteins exhibit major differences in conformation in specific regions, viz., residues 35–47, 55–78, 81–93, 96–110, 115–126, and 123–134, compared with the EDMC-refined x-ray structure of the wild-type protein. These regions have been found to be the most flexible in the p21 protein bound to GDP from prior molecular dynamics calculations (Dykeset al., 1993). Comparison of the EDMC-average structure of the transforming mutant with that of the nontransforming mutant reveals major structural differences at residues 10–16, 32–40, and 60–68. These structural differences appear to be the ones that are critical in activation of the p21 protein. Analysis of the correlated motions of the different regions of the two mutant proteins reveals that changes in the conformation of regions in the carboxyl half of the protein are caused by changes in conformation around residues 10–16 and are transmitted by means of residues around Gln 61. The latter region therefore constitutes a molecular switch unit, in agreement with conclusions from prior work.On leave from the Department of Chemistry, University of Gdask, ul. Sobieskiego 18, 80-952 Gdask, Poland.  相似文献   

20.
Mitogen-activated protein kinase (MAPK) p38 has been implicated in the pathogenesis of Alzheimer's disease, but the upstream cascade leading to p38 activation has not been elucidated in the disease. In the present study, we focused on mitogen-activated protein kinase kinase 6 (MKK6), one of the upstream activators of p38 MAPK. We found that MKK6 was not only increased but also specifically associated with granular structures in the susceptible neurons in the hippocampus and cortex of Alzheimer's disease patients, but was only weakly diffuse in the cytoplasm in neurons in control cases. Immunoblot analysis demonstrated a significant increase of MKK6 level in Alzheimer's disease compared with age-matched controls. In this regard, in hippocampal and cortical regions of individuals with Alzheimer's disease, the activated phospho-MKK6 was localized exclusively in association with pathological alterations including neurofibrillary tangles, senile plaques, neuropil threads and granular structures, overlapping with activated p38 MAPK suggesting both a functional and mechanic link. By immunoblot analysis, phospho-MKK6 is also significantly increased in AD compared with control cases. Together, these findings lend further credence to the notion that the p38 MAPK pathway is dysregulated in Alzheimer's disease and also indicates an active role for this pathway in disease pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号