首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In photoreceptor cells of the retina, photoisomerization of 11-cis-retinal to all-trans-retinal triggers phototransduction. Regeneration of 11-cis-retinal proceeds via a complex set of reactions in photoreceptors and in adjacent retinal pigment epithelial cells where all-trans-retinol is isomerized to 11-cis-retinol. Our results show that isomerization in vitro only occurs in the presence of apo-cellular retinaldehyde-binding protein. This retinoid-binding protein may drive the reaction by mass action, overcoming the thermodynamically unfavorable isomerization. Furthermore, this 11-cis-retinol/11-cis-retinal-specific binding protein potently stimulates hydrolysis of endogenous 11-cis-retinyl esters but has no effect on hydrolysis of all-trans-retinyl esters. Apo-cellular retinaldehyde-binding protein probably exerts its effect by trapping the 11-cis-retinol product. When retinoid-depleted retinal pigment epithelial microsomes were preincubated with different amounts of all-trans-retinol to form all-trans-retinyl esters and then [3H]all-trans-retinol was added, as predicted, the specific radioactivity of [3H]all-trans-retinyl esters increased during subsequent reaction. However, the specific radioactivity of newly formed 11-cis-retinol stayed constant during the course of the reaction, and it was largely unaffected by expansion of the all-trans-retinyl ester pool during the preincubation. The absence of dilution establishes that most of the ester pool does not participate in isomerization, which in turn suggests that a retinoid intermediate other than all-trans-retinyl ester is on the isomerization reaction pathway.  相似文献   

2.
Gollapalli DR  Rando RR 《Biochemistry》2003,42(19):5809-5818
The identification of the critical enzyme(s) that carries out the trans to cis isomerization producing 11-cis-retinol during the operation of the visual cycle remains elusive. Confusion exists in the literature as to the exact nature of the isomerization substrate. At issue is whether it is an all-trans-retinyl ester or all-trans-retinol (vitamin A). As both putative substrates interconvert rapidly in retinal pigment epithelial membranes, the choice of substrate can be ambiguous. The two enzymes that effect interconversion of all-trans-retinol and all-trans-retinyl esters are lecithin retinol acyl transferase (LRAT) and retinyl ester hydrolase (REH). The retinyl ester or all-trans-retinol pools are radioactively labeled separately in the presence of inhibitors of LRAT and REH, effectively preventing their interconversion. Pulse-chase experiments unambiguously demonstrate that all-trans-retinyl esters, and not all-trans-retinol, are the precursors of 11-cis-retinol. When the all-trans-retinyl ester pool is radioactively labeled, the resulting 11-cis-retinol is labeled with the same specific activity as the precursor ester. The converse is true with vitamin A. These data unambiguously establish all-trans-retinyl esters as the precursors of 11-cis-retinol.  相似文献   

3.
A novel retinoid cycle has recently been identified in the cone-dominated chicken retina, and this cone cycle accumulates 11-cis-retinyl esters upon light adaptation. The purpose of this study is to investigate how 11-cis-retinyl esters are formed in the retina. Primary cultures of chicken Muller cells and cell membrane were incubated with all-trans- or 11-cis-retinol to study retinyl ester synthesis. In Muller cells, esterification of 11-cis-retinol was four times greater than esterification of all-trans-retinol. In the presence of palmitoyl-CoA and CRALBP, Muller cell membranes synthesized 11-cis-retinyl ester from 11-cis-retinol at a rate which was 20-fold higher than that of all-trans-retinyl ester. In the absence of CRALBP, 11-cis-retinyl ester synthesis was greatly reduced (by 7-fold). In the absence of palmitoyl-CoA, retinyl ester synthesis was not observed. Muller cell membranes incubated with radiolabeled palmitoyl-CoA resulted in the transfer of the labeled acyl group to retinol. This acyl transfer was greatly reduced in the presence of progesterone, a known ARAT inhibitor. 11-cis-ARAT activity remained unchanged when assayed in the presence of all-trans-retinol, suggesting a distinct catalytic activity from that of all-trans-ARAT. Apparent kinetic rates for 11-cis-ARAT were 0.135 nmol min(-)(1) mg(-)(1) (V(max)) and 11.25 microM (K(M)) and for all-trans-ARAT were 0.0065 nmol min(-)(1) mg(-)(1) (V(max)) and 28.88 microM (K(M)). Our data indicate that Muller cells in the chicken retina possess 11-cis-ARAT activity, thus providing an explanation for the accumulation of 11-cis-retinyl esters in the cone cycle.  相似文献   

4.
The biosynthesis of 11-cis-retinol in the retinal pigment epithelium requires two consecutive enzymatic reactions. The first involves the esterification of all-trans-retinol by lecithin retinol acyltransferase (LRAT). The second reaction involves the direct conversion of an all-trans-retinyl ester into 11-cis-retinol by an isomerase-like enzyme. This latter reaction couples the free energy of hydrolysis of an ester to the thermodynamically uphill trans to cis conversion, thus providing the energy to drive the latter process. In this paper both enzymes are studied with respect to their substrate specificities to provide information on mechanism. The isomerase is shown to be highly specific with respect to the ionylidene ring system and substitution at C15, whereas sterically bulkier substituents at C9 and C11 are permitted. C5 and C13 demethyl retinoids are isomerized, removing from consideration isomerization mechanisms involving C-H abstraction at the C5 or C13 methyl groups of the retinoid. On the other hand, C9 demethyl retinoids are not isomerized. A C-H abstraction mechanism is unlikely at the C9 methyl group as well, because no kinetic deuterium isotope effect is found with all-trans-19,19,19-trideuterioretinoids and isomerization of unlabeled retinoids occurs without the incorporation of deuterium when the isomerization is performed in D2O. LRAT proved to be broadly specific for retinols but was relatively inert with other hydrophobic alcohols including cholesterol. The enzyme is also highly specific for phosphatidylcholine analogues versus other potential membranous acyl donors such as phosphatidylethanolamine and phosphatidylserine.  相似文献   

5.
Lecithin retinol acyl transferase (LRAT) from the retinyl pigment epithelium is potently inhibited by all-trans-retinyl alpha-bromoacetate in the micromolar range. The inhibition is competitive and reversible. The retinyl pigment epithelium also contains an enzymatic activity capable of converting added all-trans-retinol into 11-cis-retinol. This isomerization is likely to require the intermediate formation of all-trans-retinyl esters, which are themselves produced by LRAT action. Here this possibility is directly tested by studying the effect of all-trans-retinyl alpha-bromoacetate on the isomerization reaction. When pigment epithelium membranes are preincubated with all-trans-retinyl alpha-bromoacetate, they form neither retinyl esters nor 11-cis-retinol from added all-trans-retinol. However, if the pigment epithelium membranes are first allowed to form all-trans-retinyl esters from all-trans-retinol before the addition of all-trans-retinyl alpha-bromoacetate, then 11-cis-retinol formation proceeds at close to the rate found in the absence of inhibitor. In addition, 11-cis-retinyl esters are not formed under these conditions, eliminating the possibility of a direct ester-ester isomerization route. Therefore, all-trans-retinyl esters are obligate intermediates in the biosynthesis of 11-cis-retinol.  相似文献   

6.
The regeneration of 11-cis-retinal, the universal chromophore of the vertebrate retina, is a complex process involving photoreceptors and adjacent retinal pigment epithelial cells (RPE). 11-cis-Retinal is coupled to opsins in both rod and cone photoreceptor cells and is photoisomerized to all-trans-retinal by light. Here, we show that RPE microsomes can catalyze the reverse isomerization of 11-cis-retinol to all-trans-retinol (and 13-cis-retinol), and membrane exposure to UV light further enhances the rate of this reaction. This conversion is inhibited when 11-cis-retinol is in a complex with cellular retinaldehyde-binding protein (CRALBP), providing a clear demonstration of the protective effect of retinoid-binding proteins in retinoid processes in the eye, a function that has been long suspected but never proven. The reverse isomerization is nonenzymatic and specific to alcohol forms of retinoids, and it displays stereospecific preference for 11-cis-retinol and 13-cis-retinol but is much less efficient for 9-cis-retinol. The mechanism of reverse isomerization was investigated using stable isotope-labeled retinoids and radioactive tracers to show that this reaction occurs with the retention of configuration of the C-15 carbon of retinol through a mechanism that does not eliminate the hydroxyl group, in contrast to the enzymatic all-trans-retinol to 11-cis-retinol reaction. The activation energy for the conversion of 11-cis-retinol to all-trans-retinol is 19.5 kcal/mol, and 20.1 kcal/mol for isomerization of 13-cis-retinol to all-trans-retinol. We also demonstrate that the reverse isomerization occurs in vivo using exogenous 11-cis-retinol injected into the intravitreal space of wild type and Rpe65-/- mice, which have defective forward isomerization. This study demonstrates an uncharacterized activity of RPE microsomes that could be important in the normal flow of retinoids in the eye in vivo during dark adaptation.  相似文献   

7.
The key step in the visual pigment regeneration process is an enzyme-catalyzedtrans tocis retinoid isomerization reaction. This reaction is of substantial general interest, because it requires the input of metabolic energy. The energy is needed because the 11-cis-retinoid reaction products are approximately 4kcal/mol higher in energy than their all-trans congeners. In the retinal pigment epithelium a novel enzymatic system has been discovered which is capable of converting all-trans-retinol into all-trans retinyl esters, by means of a lecithin retinol acyl transferase (LRAT), followed by the direct processing of the ester into 11-cis-retinol. In this process the free energy of hydrolysis of a retinyl ester, estimated to be approximately –5kcal/mol, is coupled to the endothermic (+4kcal/mol) isomerization reaction, resulting in an overall exothermic process. The overall process is analogous to ATP-dependent group transfer reactions, but here the energy is provided by the membrane phospholipids. This process illustrates a new role for membranes: they can serve as an energy source.  相似文献   

8.
9-cis-retinoids: biosynthesis of 9-cis-retinoic acid   总被引:5,自引:0,他引:5  
  相似文献   

9.
We have previously shown that membranes from the retinal pigment epithelium can transform added all-trans-retinol into a mixture of 11-cis-retinoids, demonstrating the "missing reaction" in the visual cycle for the first time (Bernstein, P. S., Law, W. C., and Rando, R. R. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1849-1853). In this article, this isomerase activity is further characterized. Double-label experiments with [15-3H]- and [15-14C]all-trans-retinol as the substrate show that the tritium label is retained in the 11-cis-retinol and 11-cis-retinyl palmitate products. This requires that isomerization occur at the alcohol level of oxidation. All-trans-retinyl esters, such as the palmitate, acetate, butyrate, and hexanoate esters, are not directly transformed into their 11-cis counterparts by the membranes. The data are consistent with the presence of an all-trans-retinol isomerase enzyme system or enzyme complex, which produces 11-cis-retinol. Other isomeric retinols were tested for substrate activity. Neither 9-cis-retinol(al) nor 13-cis-retinol were processed by the isomerase. Since the membranes containing the isomerase possess other retinol metabolizing activities, such as retinyl ester synthetase and dehydrogenase activities, further purification was attempted. Appreciable quantities of all detergents tested led to the disappearance of isomerase activity, and high salt or EDTA did not dissociate isomerase activity from the membranes. However, extensive sonication of the membranes did produce a 100,000 x g supernatant fraction of light membranes depleted of other all-trans-retinol processing activities. The isomerase activity in these membranes was saturable with all-trans-retinol, as required for a biologically significant process, and showed a Vmax of 5 pmol/h/mg of protein, a KM of 0.8 microM, and a pH optimum of 8. The isomerase was destroyed by proteinase K, by phospholipase C, by heating, or by ethanol at concentrations greater than 1%. The addition of high energy compounds, such as MgATP, MgGTP, or palmitoyl-CoA, did not appear to stimulate isomerase activity in the 100,000 x g supernatant.  相似文献   

10.
Understanding of the stereospecificity of enzymatic reactions that regenerate the universal chromophore required to sustain vision in vertebrates, 11-cis-retinal, is needed for an accurate molecular model of retinoid transformations. In rod outer segments (ROS), the redox reaction involves all-trans-retinal and pro-S-NADPH that results in the production of pro-R-all-trans-retinol. A recently identified all-trans-retinol dehydrogenase (photoreceptor retinol dehydrogenase) displays identical stereospecificity to that of the ROS enzyme(s). This result is unusual, because photoreceptor retinol dehydrogenase is a member of a short chain alcohol dehydrogenase family, which is often pro-S-specific toward their hydrophobic alcohol substrates. The second redox reaction occurring in retinal pigment epithelium, oxidation of 11-cis-retinol, which is largely catalyzed by abundantly expressed 11-cis-retinol dehydrogenase, is pro-S-specific to both 11-cis-retinol and NADH. However, there is notable presence of pro-R-specific activities. Therefore, multiple retinol dehydrogenases are involved in regeneration of 11-cis-retinal. Finally, the cellular retinaldehyde-binding protein-induced isomerization of all-trans-retinol to 11-cis-retinol proceeds with inversion of configuration at the C(15) carbon of retinol. Together, these results provide important additions to our understanding of retinoid transformations in the eye and a prelude for in vivo studies that ultimately may result in efficient pharmacological intervention to restore and prevent deterioration of vision in several inherited eye diseases.  相似文献   

11.
Washed, buffered microsomes from bovine retinal pigment epithelium catalyze retinyl ester synthesis from retinol in the absence of an exogenous acyl donor. A plot of retinyl ester synthesis versus time reaches a plateau at 123 +/- 26 nmol of retinyl ester mg-1 microsomal protein, providing a minimum value of the concentration of the endogenous acyl donor. Fatty acyl-CoA analysis by three different methods employing high performance liquid chromatography resulted in the detection of less than 1 nmol mg-1 protein of acyl-CoA, indicating that fatty acyl-CoA is not the endogenous acyl donor. Stimulation of the rate of retinyl ester synthesis by palmitoyl-CoA or ATP, CoA, and palmitate is observed following its addition at the beginning of the reaction or after the endogenous acyl source has been exhausted by 20 min of reaction with retinol. Palmitate from [14C]palmitoyl-CoA is incorporated into retinyl ester at a rate similar to that for the incorporation of [3H] retinol, demonstrating the presence of an apparent acyl-CoA:retinol acyl transferase activity. The acyl group from palmitoyl-CoA can be transferred initially to a component of the microsomes and subsequently to retinol. The product of retinyl ester synthesis from all-trans-retinol and palmitoyl-CoA is all-trans-retinyl palmitate, indicating that the stereochemical configuration is retained during esterification. The kinetic parameters for the esterification of 11-cis-retinol and all-trans-retinol are similar.  相似文献   

12.
To elucidate the possible role of 11-cis-retinol dehydrogenase in the visual cycle and/or 9-cis-retinoic acid biosynthesis, we generated mice carrying a targeted disruption of the 11-cis-retinol dehydrogenase gene. Homozygous 11-cis-retinol dehydrogenase mutants developed normally, including their retinas. There was no appreciable loss of photoreceptors. Recently, mutations in the 11-cis-retinol dehydrogenase gene in humans have been associated with fundus albipunctatus. In 11-cis-retinol dehydrogenase knockout mice, the appearance of the fundus was normal and punctata typical of this human hereditary ocular disease were not present. A second typical symptom associated with this disease is delayed dark adaptation. Homozygous 11-cis-retinol dehydrogenase mutants showed normal rod and cone responses. 11-cis-Retinol dehydrogenase knockout mice were capable of dark adaptation. At bleaching levels under which patients suffering from fundus albipunctatus could be detected unequivocally, 11-cis-retinol dehydrogenase knockout animals displayed normal dark adaptation kinetics. However, at high bleaching levels, delayed dark adaptation in 11-cis-retinol dehydrogenase knockout mice was noticed. Reduced 11-cis-retinol oxidation capacity resulted in 11-cis-retinol/13-cis-retinol and 11-cis-retinyl/13-cis-retinyl ester accumulation. Compared with wild-type mice, a large increase in the 11-cis-retinyl ester concentration was noticed in 11-cis-retinol dehydrogenase knockout mice. In the murine retinal pigment epithelium, there has to be an additional mechanism for the biosynthesis of 11-cis-retinal which partially compensates for the loss of the 11-cis-retinol dehydrogenase activity. 11-cis-Retinyl ester formation is an important part of this adaptation process. Functional consequences of the loss of 11-cis-retinol dehydrogenase activity illustrate important differences in the compensation mechanisms between mice and humans. We furthermore demonstrate that upon 11-cis-retinol accumulation, the 13-cis-retinol concentration also increases. This retinoid is inapplicable to the visual processes, and we therefore speculate that it could be an important catabolic metabolite and its biosynthesis could be part of a process involved in regulating 11-cis-retinol concentrations within the retinal pigment epithelium of 11-cis-retinol dehydrogenase knockout mice.  相似文献   

13.
Mata NL  Ruiz A  Radu RA  Bui TV  Travis GH 《Biochemistry》2005,44(35):11715-11721
Vertebrate retinas contain two types of light-detecting cells. Rods subserve vision in dim light, while cones provide color vision in bright light. Both contain light-sensitive proteins called opsins. The light-absorbing chromophore in most opsins is 11-cis-retinaldehyde, which is isomerized to all-trans-retinaldehyde by absorption of a photon. Restoration of light sensitivity requires chemical re-isomerization of retinaldehyde by an enzymatic pathway called the visual cycle in the retinal pigment epithelium. The isomerase in this pathway uses all-trans-retinyl esters synthesized by lecithin retinol acyl transferase (LRAT) as the substrate. Several lines of evidence suggest that cone opsins regenerate by a different mechanism. Here we demonstrate the existence of two catalytic activities in chicken retinas. The first is an isomerase activity that effects interconversion of all-trans-retinol and 11-cis-retinol. The second is an ester synthase that effects palmitoyl coenzyme A-dependent synthesis of all-trans- and 11-cis-retinyl esters. Kinetic analysis of these two activities suggests that they act in concert to drive the formation of 11-cis-retinoids in chicken retinas. These activities may be part of a new visual cycle for the regeneration of chromophores in cones.  相似文献   

14.
Studies reported previously from this laboratory have demonstrated that membranes from the pigment epithelium of the vertebrate eye can transform free all-trans-retinol to 11-cis-retinol as well as 11-cis- and all trans-retinyl esters (Bernstein, P. S., Law, W. C., and Rando, R. R. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1849-1853; Bernstein, P. S., Law, W. C., and Rando, R. R. (1987) J. Biol. Chem. 262, 16848-16857; Fulton, B. S., and Rando, R. R. (1987) Biochemistry 26, 7938-7945). The congeneric retinals are also formed under conditions where retinol redox activity is present. Here we report the successful solubilization of both the retinyl ester synthetase and isomerase activities from the pigment epithelium membranes of the bovine eye. The zwitterionic detergent Zwittergent 3-14(N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate; cmc 0.012%) gave optimal solubilization of both activities. Three initial criteria for successful solubilization were used. First, high speed centrifugation (greater than 150,000 x g) left the activities in the supernatant. Second, the solubilized enzymatic activities were found in the included volume upon gel filtration. Finally, the solubilized activities were quantitatively passed through a 0.22-microns filter. Employing anion exchange and gel filtration chromatography results in a partial purification of the retinyl ester synthetase (approximately 189-fold). The solubilized retinoid isomerase is also partially purified (approximately 10-14-fold) following anion exchange chromatography. It is also shown that the membrane-bound and solubilized ester synthetase catalyzes the esterification of retinol using added lecithins as exogenous acyl donors. In addition, evidence is provided indicating that there is a positional selectivity for the acyl group transfer from the lecithin to retinol. The transfer occurs largely, if not entirely, from the 1-position of the lecithin.  相似文献   

15.
Regeneration of the visual chromophore, 11-cis-retinal, is a critical step in restoring photoreceptors to their dark-adapted conditions. This regeneration process, called the retinoid cycle, takes place in the photoreceptor outer segments and the retinal pigment epithelium (RPE). Disabling mutations in nearly all of the retinoid cycle genes are linked to human conditions that cause congenital or progressive defects in vision. Several mouse models with disrupted genes related to this cycle contain abnormal fatty acid retinyl ester levels in the RPE. To investigate the mechanisms of retinyl ester accumulation, we generated single or double knockout mice lacking retinoid cycle genes. All-trans-retinyl esters accumulated in mice lacking RPE65, but they are reduced in double knockout mice also lacking opsin, suggesting a connection between visual pigment regeneration and the retinoid cycle. Only Rdh5-deficient mice accumulate cis-retinyl esters, regardless of the simultaneous disruption of RPE65, opsin, and prRDH. 13-cis-Retinoids are produced at higher levels when the flow of retinoid through the cycle was increased, and these esters are stored in specific structures called retinosomes. Most importantly, retinylamine, a specific and effective inhibitor of the 11-cis-retinol formation, also inhibits the production of 13-cis-retinyl esters. The data presented here support the idea that 13-cis-retinyl esters are formed through an aberrant enzymatic isomerization process.  相似文献   

16.
Bok D  Ruiz A  Yaron O  Jahng WJ  Ray A  Xue L  Rando RR 《Biochemistry》2003,42(20):6090-6098
Lecithin retinol acyltransferase (LRAT) catalyzes the esterification of all-trans-retinol into all-trans-retinyl ester, an essential reaction in the vertebrate visual cycle. Since all-trans-retinyl esters are the substrates for the isomerization reaction that generates 11-cis-retinoids, this esterification reaction is essential in the operation of the visual cycle. In addition, LRAT is the founder member of a series of proteins, which are of novel sequence and have unknown functions. Native LRAT is an integral membrane protein and has never been purified. To obtain a pure LRAT, the N- and C-transmembrane termini were deleted and replaced with a poly His tag for the purpose of purification. This truncated form of LRAT, referred to as tLRAT, has been expressed in bacteria and fully purified. tLRAT is catalytically active and processes all-trans-retinol at least 10-fold more efficiently than 11-cis-retinol, the precursor to the visual chromophore. While tLRAT can be robustly expressed in bacteria, it requires detergent for extraction, as the enzyme still contains hydrophobic domains, which may interact. Indeed, tLRAT can oligomerize and forms dimers. Native LRAT also forms functional homodimers. These studies pave the way for the preparation of large-scale amounts of pure tLRAT for further mechanistic and structural studies.  相似文献   

17.
B S Fulton  R R Rando 《Biochemistry》1987,26(24):7938-7945
Previously, we have shown that retina/pigment epithelium membranes from the amphibian can synthesize 11-cis-retinoids from added all-trans-retinol [Bernstein, P.S., Law, W.C., & Rando, R.R. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1849-1853]. The activity was largely localized to the pigment epithelium. Here it is shown that, in the bovine system, the activity resides exclusively in the membranes of the pigment epithelium. Subcellular fractionation does not reveal a particular organelle where the activity resides. Washed bovine pigment epithelium membranes, which are devoid of retinoid redox activity, convert added all-trans-retinol to a mixture of 11-cis-retinol and its palmitate ester. all-trans-Retinal and all-trans-retinyl palmitate are not converted into 11-cis-retinoids by the membranes. The membranes show substantial ester synthetase activity, producing large amounts of all-trans-retinyl palmitate. Diverse chemical reagents, such as ethanol, hydroxylamine, and p-(hydroxymercuri)benzoate, inhibit both ester synthetase and isomerase activities in a roughly parallel fashion, suggesting a possible functional linkage between the two activities.  相似文献   

18.
Retinoid metabolism in cultured human retinal pigment epithelium.   总被引:1,自引:0,他引:1       下载免费PDF全文
Uptake, esterification and release of all-trans-retinol in primary cultures of human retinal epithelium were studied. Cultured cells were supplemented with 3H-labelled 11,12-all-trans-retinol, using fatty-acid-free albumin as the carrier. This led to incorporation of retinal and the formation of all-trans- and 11-cis-retinyl palmitate. The metabolism of the all-trans ester was monitored in a medium containing various concentrations of foetal-bovine serum (FBS). In 20% (v/v) FBS, the ester was hydrolysed, and all-trans-retinol was released into the culture medium. In the absence of FBS, little ester was hydrolysed and no retinol was found in the medium. Dialysed or heat-inactivated FBS or fatty-acid-free albumin was as effective as FBS in provoking ester hydrolysis and retinol release. The concentration-dependency of this effect on FBS was matched by the corresponding concentrations of albumin alone. A linear relationship was also found between interphotoreceptor retinoid-binding protein and retinoid release. Haemoglobin, which does not bind retinoids, is ineffective in this capacity. It is concluded that lipid-binding substances, mainly albumin, in FBS act as acceptors for retinol and drain the cultured cells of this molecule. The release of the retinol is coupled to the hydrolysis of retinyl esters in the cell, so that there is little or no net hydrolysis of ester if there is no acceptor for retinol in the culture medium. This effect explains why cultured human retinal epithelial cells are depleted of their stores of retinoids when maintained in medium supplemented with FBS.  相似文献   

19.
Photoisomerization of 11-cis-retinal to all-trans-retinal and reduction to all-trans-retinol occur in photoreceptor outer segments whereas enzymatic esterification of all-trans-retinol, isomerization to 11-cis-retinol, and oxidation to 11-cis-retinal occur in adjacent cells. The processes are linked into a visual cycle by intercellular diffusion of retinoids. Knowledge of the mechanistic aspects of the visual cycle is very limited. In this study, we utilize chemical analysis of visual cycle retinoids to assess physiological roles for components inferred from in vitro experiments and to understand why excised mouse eyes fail to regenerate their bleached visual pigment. Flash illumination of excised mouse eyes or eyecups, in which regeneration of rhodopsin does not occur, produced a block in the visual cycle after all-trans-retinal formation; constant illumination of eyecups produced a block in the cycle after all-trans-retinol formation; and constant illumination of whole excised eyes resulted in a block of the cycle after formation of all-trans-retinyl ester. These blocks emphasize the role of cellular metabolism in the visual cycle. Interphotoreceptor retinoid-binding protein (IRBP) has been postulated to play a role in intercellular retinoid transfer in the retina; however, the rates of recovery of 11-cis-retinal and of regeneration of rhodopsin in the dark in IRBP-/- mice were very similar to those found with wild-type (wt) mice. Thus, IRBP is necessary for photoreceptor survival but is not essential for a normal rate of visual pigment turnover. Arrestin forms a complex with activated rhodopsin, quenches its activity, and affects the release of all-trans-retinal in vitro. The rate of recovery of 11-cis-retinal in arrestin-/- mice was modestly delayed relative to wt, and the rate of rhodopsin recovery was approximately 80% of that observed with wt mice. Thus, the absence of arrestin appeared to have a minor effect on the kinetics of the visual cycle.  相似文献   

20.
Gollapalli DR  Rando RR 《Biochemistry》2003,42(50):14921-14929
The biochemical pathway to visual chromophore biosynthesis in rod-dominated animals involves minimally a two component system in which all-trans-retinyl esters, generated by the action of lecithin retinol acyltransferase (LRAT) on vitamin A, are processed into 11-cis-retinol by isomerohydrolase. Possible differences in retinoid metabolism in cone-dominated animals have been noted in the literature, so it was of interest to explore whether these differences are tangential or fundamental. Central to this issue is whether cone-dominated animals use an isomerohydrolase (IMH)-based mechanism in the predominant pathway to 11-cis-retinoids. Here, it is shown that all-trans-retinyl esters (tREs) are the direct precursors of 11-cis-retinol formation in chicken retinyl pigment epithelium/retina preparations. This conclusion is based on at least three avenues of evidence. First, reagents that block tRE synthesis from vitamin A also block 11-cis-retinol synthesis. Second, pulse-chase experiments also establish that tREs are the precursors to 11-cis-retinol. Finally, 11-cis-retinyl-bromoacetate, a known affinity-labeling agent of isomerohydrolase, also blocks chromophore biosynthesis in the cone system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号