首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants exhibit organ- and tissue-specific light responses. To explore the molecular basis of spatial-specific phytochrome-regulated responses, a transgenic approach for regulating the synthesis and accumulation of the phytochrome chromophore phytochromobilin (PΦB) was employed. In prior experiments, transgenic expression of the BILIVERDIN REDUCTASE (BVR) gene was used to metabolically inactivate biliverdin IXα, a key precursor in the biosynthesis of PΦB, and thereby render cells accumulating BVR phytochrome deficient. Here, we report analyses of transgenic Arabidopsis (Arabidopsis thaliana) lines with distinct patterns of BVR accumulation dependent upon constitutive or tissue-specific, promoter-driven BVR expression that have resulted in insights on a correlation between root-localized BVR accumulation and photoregulation of root elongation. Plants with BVR accumulation in roots and a PΦB-deficient elongated hypocotyl2 (hy2-1) mutant exhibit roots that are longer than those of wild-type plants under white illumination. Additional analyses of a line with root-specific BVR accumulation generated using a GAL4-dependent bipartite enhancer-trap system confirmed that PΦB or phytochromes localized in roots directly impact light-dependent root elongation under white, blue, and red illumination. Additionally, roots of plants with constitutive plastid-localized or root-specific cytosolic BVR accumulation, as well as phytochrome chromophore-deficient hy1-1 and hy2-1 mutants, exhibit reduced sensitivity to the plant hormone jasmonic acid (JA) in JA-dependent root inhibition assays, similar to the response observed for the JA-insensitive mutants jar1 and myc2. Our analyses of lines with root-localized phytochrome deficiency or root-specific phytochrome depletion have provided novel insights into the roles of root-specific PΦB, or phytochromes themselves, in the photoregulation of root development and root sensitivity to JA.  相似文献   

2.
3.
We isolated a new pea mutant that was selected on the basis of pale color and elongated internodes in a screen under white light. The mutant was designated pcd1 for phytochrome chromophore deficient. Light-grown pcd1 plants have yellow-green foliage with a reduced chlorophyll (Chl) content and an abnormally high Chl a/Chl b ratio. Etiolated pcd1 seedlings are developmentally insensitive to far-red light, show a reduced response to red light, and have no spectrophotometrically detectable phytochrome. The phytochrome A apoprotein is present at the wild-type level in etiolated pcd1 seedlings but is not depleted by red light treatment. Crude phytochrome preparations from etiolated pcd1 tissue also lack spectral activity but can be assembled with phycocyanobilin, an analog of the endogenous phytochrome chromophore phytochromobilin, to yield a difference spectrum characteristic of an apophytochrome-phycocyanobilin adduct. These results indicate that the pcd1-conferred phenotype results from a deficiency in phytochrome chromophore synthesis. Furthermore, etioplast preparations from pcd1 seedlings can metabolize biliverdin (BV) IX[alpha] but not heme to phytochromobilin, indicating that pcd1 plants are severely impaired in their ability to convert heme to BV IX[alpha]. This provides clear evidence that the conversion of heme to BV IX[alpha] is an enzymatic process in higher plants and that it is required for synthesis of the phytochrome chromophore and hence for normal photomorphogenesis.  相似文献   

4.
The phenotypic consequences of targeted expression of mammalian biliverdin IXalpha reductase (BVR), an enzyme that metabolically inactivates the linear tetrapyrrole precursors of the phytochrome chromophore, are addressed in this investigation. Through comparative phenotypic analyses of multiple plastid-targeted and cytosolic BVR transgenic Arabidopsis plant lines, we show that the subcellular localization of BVR affects distinct subsets of light-mediated and light-independent processes in plant growth and development. Regardless of its cellular localization, BVR suppresses the phytochrome-modulated responses of hypocotyl growth inhibition, sucrose-stimulated anthocyanin accumulation, and inhibition of floral initiation. By contrast, reduced protochlorophyll levels in dark-grown seedlings and fluence-rate-dependent reduction of chlorophyll occur only in transgenic plants in which BVR is targeted to plastids. Together with companion analyses of the phytochrome chromophore-deficient hy1 mutant, our results suggest a regulatory role for linear tetrapyrroles within the plastid compartment distinct from their assembly with apophytochromes in the cytosol.  相似文献   

5.
6.
The committed step in the biosynthesis of the phytochrome chromophore phytochromobilin involves the oxidative cleavage of heme by a heme oxygenase (HO) to form biliverdin IXalpha. Through positional cloning of the photomorphogenic mutant hy1, the Arabidopsis HO (designated AtHO1) responsible for much of phytochromobilin synthesis recently was identified. Using the AtHO1 sequence, we identified families of HO genes in a number of plants that cluster into two subfamilies (HO1- and HO2-like). The tomato (Lycopersicon esculentum) yg-2 and Nicotiana plumbaginifolia pew1 photomorphogenic mutants are defective in specific HO genes. Phenotypic analysis of a T-DNA insertion mutant of Arabidopsis HO2 revealed that the second HO subfamily also contributes to phytochromobilin synthesis. Homozygous ho2-1 plants show decreased chlorophyll accumulation, reduced growth rate, accelerated flowering time, and reduced de-etiolation. A mixture of apo- and holo-phyA was detected in etiolated ho2-1 seedlings, suggesting that phytochromobilin is limiting in this mutant, even in the presence of functional AtHO1. The patterns of Arabidopsis HO1 and HO2 expression suggest that the products of both genes overlap temporally and spatially. Taken together, the family of HOs is important for phytochrome-mediated development in a number of plants and that each family member may uniquely contribute to the phytochromobilin pool needed to assemble holo-phytochromes.  相似文献   

7.
Utilizing an in vitro coupled assay system, we show that isolated plastids from cucumber cotyledons convert the linear tetrapyrrole biliverdin IX alpha to the free phytochrome chromophore, phytochromobilin, which assembles with oat apophytochrome to yield photoactive holoprotein. The spectral properties of this synthetic phytochrome are indistinguishable from those of the natural photoreceptor. The plastid-dependent biliverdin conversion activity is strongly stimulated by both NADPH and ATP. Substitution of the nonnatural XIII alpha isomer of biliverdin for the IX alpha isomer affords a synthetic holophytochrome adduct with blue-shifted difference spectra. These results, together with experiments using boiled plastids, indicate that phytochromobilin synthesis from biliverdin is enzyme-mediated. Experiments where NADPH (and ATP) levels in intact developing chloroplasts are manipulated by feeding the metabolites 3-phosphoglycerate, dihydroxyacetone phosphate, and glucose 6-phosphate or by illumination with white light, support the hypothesis that the enzyme that accomplishes this conversion, phytochromobilin synthase, is plastid-localized. It is therefore likely that all of the enzymes of the phytochrome chromophore biosynthetic pathway reside in the plastid.  相似文献   

8.
Phytochromes are a family of photoreceptor molecules, absorbing primarily in red and far-red, that are important in many aspects of plant development. These studies investigated the role of phytochromes in phototropism and gravitropism of seedlings of Arabidopsis thaliana. We used two transgenic lines, one which lacked phytochromes specifically in the roots (M0062/UASBVR) and the other lacked phytochromes in the shoots (CAB3::pBVR). These transgenic plants are deficient in the phytochrome chromophore in specific tissues due the expression of biliverdin IXa reductase (BVR), which binds to precursors of the chromophore. Experiments were performed in both light and dark conditions to determine whether roots directly perceive light signals or if the signal is perceived in the shoot and then transmitted to the root during tropistic curvature. Kinetics of tropisms and growth were assayed by standard methods or with a computer-based feedback system. We found that the perception of red light occurs directly in the root during phototropism in this organ and that signaling also may occur from root to shoot in gravitropism.  相似文献   

9.
Some morphogenetic responses, induced by far red (FR) light in tobacco plants (Nicotiana tabacum L.), were studied. The inhibitory effect of FR irradiation on chlorophyll synthesis in transgenic plants with reduced phytochrome A content was almost absent. Phytochrome A-mediated repression of the por gene was demonstrated with the use of polyclonal antiserum against protochlorophyllide oxidoreductase. Continuous FR light induced the accumulation of Rubisco large subunits in wild-type but not in transgenic tobacco plants. Our data confirm the suggestion that phytochrome A mediates photoregulation of the synthesis of these proteins.  相似文献   

10.
During screening of ethylmethane sulphonate-mutagenized pea ( Pisum sativum L.) seedlings under far-red light a mutant line, AF130, was isolated which showed a reduction in both red and far-red light-induced de-etiolation responses. The photomorphogenic phenotype of AF130 results from a single recessive mutation which is not allelic with the previously described phytochrome chromophore biosynthesis mutant pcd1 . This new mutant has been designated pcd2 , for p hytochrome c hromophore d eficient 2. Like pcd1 , etiolated pcd2 seedlings are severely deficient in spectrally active phytochrome and contain wild-type levels of phytochrome A apoprotein which is not substantially depleted by red light treatment. Etioplast preparations from pcd2 seedlings can metabolize heme to biliverdin (BV) IXα, but are unable to convert BV IXα to the phytochrome chromophore, phytochromobilin. The PCD1 and PCD2 genes therefore control consecutive steps in phytochromobilin synthesis. Despite a similarly severe impairment of photomorphogenic responses, pcd2 mutant seedlings do not display the strongly chlorotic phenotype of pcd1 , suggesting that this characteristic of pcd1 does not result from phytochrome deficiency per se , but is a specific effect of the pcd1 mutation. A double mutant between pcd1 and pcd2 was constructed. This mutant is paler than pcd1 and less responsive to red light than either single mutant, but retains a strong response to blue light.  相似文献   

11.
The red/far-red reversible phytochromes play a central role in regulating the development of plants in relation to their light environment. Studies on the roles of different members of the phytochrome family have mainly focused on light-labile, phytochrome A and light-stable, phytochrome B. Although these two phytochromes often regulate identical responses, they appear to have discrete photosensory functions. Thus, phytochrome A predominantly mediates responses to prolonged far-red light, as well as acting in a non-red/far-red-reversible manner in controlling responses to light pulses. In contrast, phytochrome B mediates responses to prolonged red light and acts photoreversibly under light-pulse conditions. However, it has been reported that rice (Oryza sativa L.) phytochrome A operates in a classical red/far-red reversible fashion following its expression in transgenic tobacco plants. Thus, it was of interest to determine whether transgenic rice phytochrome A could substitute for loss of phytochrome B in phyB mutants of Arabidopsis thaliana (L.) Heynh. We have observed that ectopic expression of rice phytochrome A can correct the reduced sensitivity of phyB hypocotyls to red light and restore their response to end-of-day far-red treatments. The latter is widely regarded as a hallmark of phytochrome B action. However, although transgenic rice phytochrome A can correct other aspects of elongation growth in the phyB mutant it does not restore other responses to end-of-day far-red treatments nor does it restore responses to low red:far-red ratio. Furthermore, transgenic rice phytochrome A does not correct the early-flowering phenotype of phyB seedlings. Received: 12 July 1998 / Accepted: 13 August 1998  相似文献   

12.
A comparison of the photoregulation of development has been made for etiolated and light-grown plants of wild-type (WT) tobacco (Nicotiana tabacun L.) and an isogenic transgenic line which expresses an introduced oat phytochrome gene (phyA) under the control of a constitutive viral promoter. Etiolated seedlings of both the WT and transgenic line showed irradiance-dependent inhibition of hypocotyl growth under continuous far-red (FR) light; transgenic seedlings showed a greater level of inhibition under a given fluence rate and this is considered to be the result of the heterologous phytochrome protein (PhyA) functioning in a compatible manner with the native etiolated phytochrome. Deetiolation of WT seedlings resulted in a loss of responsiveness to prolonged FR. Light-grown transgenic seedlings, however, continued to respond in an irradiance-dependent manner to prolonged FR and it is proposed that this is a specific function of the constitutive PhyA. Mature green plants of the WT and transgenic lines showed a qualitatively similar growth promotion to a brief end-of-day FR-treatment but this response was abolished in the transgenic plants under prolonged irradiation by this same FR source. Growth inhibition (McCormac et al. 1991, Planta 185, 162–170) and enhanced levels of nitrate-reductase activity under irradiance of low red:far-red ratio, as achieved by the FR-supplementation of white light, emphasised that the introduced PhyA was eliciting an aberrant mode of photoresponse compared with the normal phytochrome population of light-grown plants. Total levels of the oat-encoded phytochrome in the etiolated transgenic tobacco were shown to be influenced by the wavelength of continuous irradiation in a manner which was qualitatively similar to that seen for the native, etiolated tobacco phytochrome, and distinct from that seen in etiolated oat tissues. These results are discussed in terms of the proposal that the constitutive oat-PhyA pool in the transgenic plants leads to a persistence of a mode of response normally restricted to the situation in etiolated plants.Abbreviations FR far-red light - R red light - WL white light - WL + FR white light supplemented with FR - HIR high-irradiance response - PAR photosynthetically active radiation - Pr, Pfr R- and FR-absorbing forms of phytochrome - Ptot total phytochrome - phyA (PhyA) gene (encoded protein) for phytochrome - WT wild type This work was supported by an Agricultural and Food Research Council research grant to H.S. and A.M.; J.R. Cherry and R.D. Vierstra, (Department of Horticulture, University of Wisconsin-Madison, USA) are thanked for the provision of the transgenic tobacco line.  相似文献   

13.
Rice Phytochrome Is Biologically Active in Transgenic Tobacco   总被引:22,自引:7,他引:15       下载免费PDF全文
To investigate the mechanisms of phytochrome action in vivo, we have overexpressed rice phytochrome in transgenic tobacco plants. A full-length rice phytochrome cDNA was fused to the cauliflower mosaic virus 35S promoter and transferred to tobacco. The progeny of some of the transgenic plants contain large amounts of rice phytochrome mRNA in green leaves. Extracts prepared from overexpressing plants contain twofold to fivefold more spectrophotometrically detectable phytochrome than extracts from control plants. Species-specific, anti-phytochrome monoclonal antibodies were used in immunoblots to discriminate between rice and tobacco phytochrome apoproteins in fractions eluted from a DEAE-Sepharose column. Red minus far-red difference spectra of the partially purified rice phytochrome from the transgenic plants indicate that the rice phytochrome assembles with chromophore and is photoreversible. Analysis of the circadian pattern of Cab mRNA levels in transgenic plants versus controls demonstrates that the overproduction of rice phytochrome extends the duration of the free-running rhythm of Cab gene expression. The rice phytochrome is, therefore, biologically active in the transgenic tobacco plant, which establishes a system for in vivo functional analysis of phytochrome.  相似文献   

14.
15.
Parks BM  Quail PH 《The Plant cell》1991,3(11):1177-1186
The hy1 and hy2 long hypocotyl mutants of Arabidopsis contain normal levels of immunochemically detectable phytochrome A, but the molecule is photochemically nonfunctional. We have investigated the biochemical basis for this lack of function. When the hy1 and hy2 mutants were grown in white light on a medium containing biliverdin IX[alpha], a direct precursor to phytochromobilin, the phytochrome chromophore, the seedlings developed with a morphological phenotype indistinguishable from the light-grown wild-type control. Restoration of a light-grown phenotype in the hy1 mutant was also accomplished by using phycocyanobilin, a tetrapyrrole analog of phytochromobilin. Spectrophotometric and immunochemical analyses of the rescued hy1 and hy2 mutants demonstrated that they possessed wild-type levels of photochemically functional phytochrome that displayed light-induced conformational changes in the holoprotein indistinguishable from the wild type. Moreover, phytochrome A levels declined in vivo in response to white light in rescued hy1 and hy2 seedlings, indicative of biliverdin-dependent formation of photochemically functional phytochrome A that was then subject to normal selective turnover in the far-red-light-absorbing form. Combined, these data suggest that the hy1 and hy2 mutants are inhibited in chromophore biosynthesis at steps prior to the formation of biliverdin IX[alpha], thus potentially causing a global functional deficiency in all members of the phytochrome photoreceptor family.  相似文献   

16.
Targeted expression of mammalian biliverdin IXalpha reductase (BVR), an enzyme that metabolically inactivates linear tetrapyrrole precursors of the phytochrome chromophore, was used to examine the physiological functions of phytochromes in the qualitative short-day tobacco (Nicotiana tabacum cv Maryland Mammoth) plant. Comparative phenotypic and photobiological analyses of plastid- and cytosol-targeted BVR lines showed that multiple phytochrome-regulated processes, such as hypocotyl and internode elongation, anthocyanin synthesis, and photoperiodic regulation of flowering, were altered in all lines examined. The phytochrome-mediated processes of carotenoid and chlorophyll accumulation were strongly impaired in plastid-targeted lines, but were relatively unaffected in cytosol-targeted lines. Under certain growth conditions, plastid-targeted BVR expression was found to nearly abolish the qualitative inhibition of flowering by long-day photoperiods. The distinct phenotypes of the plastid-targeted BVR lines implicate a regulatory role for bilins in plastid development or, alternatively, reflect the consequence of altered tetrapyrrole metabolism in plastids due to bilin depletion.  相似文献   

17.
Su YS  Lagarias JC 《The Plant cell》2007,19(7):2124-2139
The photoreversibility of plant phytochromes enables continuous surveillance of the ambient light environment. Through expression of profluorescent, photoinsensitive Tyr-to-His mutant alleles of Arabidopsis thaliana phytochrome B (PHYB(Y276H)) and Arabidopsis phytochrome A (PHYA(Y242H)) in transgenic Arabidopsis plants, we demonstrate that photoconversion is not a prerequisite for phytochrome signaling. PHYB(Y276H)-expressing plants exhibit chromophore-dependent constitutive photomorphogenesis, light-independent phyB(Y276H) nuclear localization, constitutive activation of genes normally repressed in darkness, and light-insensitive seed germination. Fluence rate analyses of transgenic plants expressing PHYB(Y276H), PHYA(Y242H), and other Y(GAF) mutant alleles of PHYB demonstrate that a range of altered light-signaling activities are associated with mutation of this residue. We conclude that the universally conserved GAF domain Tyr residue, with which the bilin chromophore is intimately associated, performs a critical role in coupling light perception to signal transduction by plant phytochromes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号