共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
M Carmen Louzao Eva Cagide Mercedes R Vieytes Makoto Sasaki Haruhiko Fuwa Takeshi Yasumoto Luis M Botana 《Cellular physiology and biochemistry》2006,17(5-6):257-268
BACKGROUND: Gambierol is a polycyclic ether toxin with the same biogenetic origin as ciguatoxins. Gambierol has been associated with neurological symptoms in humans even though its mechanism of action has not been fully characterized. METHODS: We studied the effect of gambierol in human neuroblastoma cells by using bis-oxonol to measure membrane potential and FURA-2 to monitor intracellular calcium. RESULTS: We found that this toxin: i) produced a membrane depolarization, ii) potentiated the effect of veratridine on membrane potential iii) decreased ciguatoxin-induced depolarization and iv) increased cytosolic calcium in neuroblastoma cells. CONCLUSION: These results indicate that gambierol modulate ion fluxes by acting as a partial agonist of sodium channels. 相似文献
6.
The drug 5-fluorouracil (5-FU) is a widely used chemotherapeutic in the treatment of solid tumors. Recently, the essential 3'-5' exonucleolytic multisubunit RNA exosome was implicated as a target for 5-FU in yeast. Here, we show that this is also the case in human cells. HeLa cells depleted of the inessential exosome component hRrp6, also called PM/Scl100, are significantly growth impaired relative to control cells after 5-FU administration. The selective stabilization of bona fide hRrp6 RNA substrates on 5-FU treatment suggests that this exosome component is specifically targeted. Consistently, levels of hRrp6 substrates are increased in two 5-FU-sensitive cell lines. Interestingly, whereas down-regulation of all tested core exosome components results in decreased hRrp6 levels, depletion of hRrp6 leaves levels of other exosome components unchanged. Taken together, our data position hRrp6 as a promising target for antiproliferative intervention. 相似文献
7.
Xiaoxi Yang Chuiguo Sun Xiangyu Meng Guanghui Chen Tianqi Fan Chi Zhang Zhongqiang Chen 《Journal of cellular and molecular medicine》2022,26(14):3862
Thoracic ossification of the ligamentum flavum (TOLF) is ectopic ossification of the spinal ligaments. Histologically, the development of TOLF can be described as the process of endochondral ossification. However, the underlying aetiology has not been completely clarified. In this investigation, the gene expression profile associated with leucine‐rich repeat‐containing G‐protein‐coupled receptors (LGR) and Wnt signalling pathway in the thoracic ligamentum flavum cells (TLFCs) of different ossification stages was analysed via RNA sequencing. We further confirmed the significant differences in the related gene expression profile by Gene Ontology (GO) enrichment analysis. LGR5 was first identified in primary human TLFCs during osteogenic differentiation. To evaluate the effect of LGR5 on osteogenic differentiation, LGR5 has been knocked down and overexpressed in human TLFCs. We observed that the knockdown of LGR5 inhibited the activity of Wnt signalling and attenuated the potential osteogenic differentiation of TLFCs, while overexpression of LGR5 activated the Wnt signalling pathway and increased osteogenic differentiation. Our results provide important evidence for the potent positive mediatory effects of LGR5 on osteogenesis by enhancing the Wnt signalling pathway in TOLF. 相似文献
8.
9.
10.
Amaral JD Castro RE Solá S Steer CJ Rodrigues CM 《The Journal of biological chemistry》2007,282(47):34250-34259
11.
A Noto S Raffa C De Vitis G Roscilli D Malpicci P Coluccia A Di Napoli A Ricci M R Giovagnoli L Aurisicchio M R Torrisi G Ciliberto R Mancini 《Cell death & disease》2013,4(12):e947
In recent years, studies of cancer development and recurrence have been influenced by the cancer stem cells (CSCs)/cancer-initiating cells (CICs) hypothesis. According to this, cancer is sustained by highly positioned, chemoresistant cells with extensive capacity of self renewal, which are responsible for disease relapse after chemotherapy. Growth of cancer cells as three-dimensional non-adherent spheroids is regarded as a useful methodology to enrich for cells endowed with CSC-like features. We have recently reported that cell cultures derived from malignant pleural effusions (MPEs) of patients affected by adenocarcinoma of the lung are able to efficiently form spheroids in non-adherent conditions supplemented with growth factors. By expression profiling, we were able to identify a set of genes whose expression is significantly upregulated in lung tumor spheroids versus adherent cultures. One of the most strongly upregulated gene was stearoyl-CoA desaturase (SCD1), the main enzyme responsible for the conversion of saturated into monounsaturated fatty acids. In the present study, we show both by RNA interference and through the use of a small molecule inhibitor that SCD1 is required for lung cancer spheroids propagation both in stable cell lines and in MPE-derived primary tumor cultures. Morphological examination and image analysis of the tumor spheroids formed in the presence of SCD1 inhibitors showed a different pattern of growth characterized by irregular cell aggregates. Electron microscopy revealed that the treated spheroids displayed several features of cellular damage and immunofluorescence analysis on optical serial sections showed apoptotic cells positive for the M30 marker, most of them positive also for the stemness marker ALDH1A1, thus suggesting that the SCD1 inhibitor is selectively killing cells with stem-like properties. Furthermore, SCD1-inhibited lung cancer cells were strongly impaired in their in vivo tumorigenicity and ALDH1A1 expression. These results suggest that SCD1 is a critical target in lung cancer tumor-initiating cells. 相似文献
12.
13.
MARCKS protein is a key molecule regulating mucin secretion by human airway epithelial cells in vitro 总被引:17,自引:0,他引:17
Hypersecretion of airway mucin characterizes numerous respiratory diseases. Although diverse pathological stimuli can provoke exocytotic release of mucin from secretory cells of the airway epithelium, mechanisms involved remain obscure. This report describes a new paradigm for the intracellular signaling mechanism regulating airway mucin secretion. Direct evidence is provided that the myristoylated alanine-rich C kinase substrate (MARCKS) is a central regulatory molecule linking secretagogue stimulation at the cell surface to mucin granule release by differentiated normal human bronchial epithelial cells in vitro. Down-regulation of MARCKS expression or disruption of MARCKS function in these cells inhibits the secretory response to subsequent stimulation. The intracellular mechanism controlling this secretory process involves cooperative action of two separate protein kinases, protein kinase C and cGMP-dependent protein kinase. Upon stimulation, activated protein kinase C phosphorylates MARCKS, causing translocation of MARCKS from the plasma membrane to the cytoplasm, where it is then dephosphorylated by a protein phosphatase 2A that is activated by cGMP-dependent protein kinase, and associates with both actin and myosin. Dephosphorylated cytoplasmic MARCKS would also be free to interact with mucin granule membranes and thus could link granules to the contractile cytoskeleton, mediating their movement to the cell periphery and subsequent exocytosis. These findings suggest several novel intracellular targets for pharmacological intervention in disorders involving aberrant secretion of respiratory mucin and may relate to other lesions involving exocytosis of membrane-bound granules in various cells and tissues. 相似文献
14.
S H Gromkowski T C Brown P A Cerutti J C Cerottini 《Journal of immunology (Baltimore, Md. : 1950)》1986,136(3):752-756
Human Raji target cells DNA is degraded by the introduction of single-strand breaks (alkali-sensitive sites) upon lymphocyte-mediated lysis. This type of DNA degradation appears earlier and is more extensive in lymphocyte-than in antibody + complement-mediated lysis of Raji cells, regardless of the species of effector lymphocytes (human or mouse). Mouse P815 target cell DNA is extensively fragmented (yielding 200 base pair fragments) when human or mouse lymphocytes are used to lyse P815. Thus, these observations indicate that both human and mouse target cell DNA are affected during lymphocyte-mediated lysis. Moreover, the pattern of DNA degradation in target cells lysed by effector lymphocytes is characteristic of the target cell species, suggesting that DNA degradation proceeds through the activation of target cell endonuclease(s). 相似文献
15.
Oligoribonuclease is a common downstream target of lithium-induced pAp accumulation in Escherichia coli and human cells 下载免费PDF全文
We identified Oligoribonuclease (Orn), an essential Escherichia coli protein and the only exonuclease degrading small ribonucleotides (5mer to 2mer) and its human homologue, small fragment nuclease (Sfn), in a screen for proteins that are potentially regulated by 3′-phosphoadenosine 5′-phosphate (pAp). We show that both enzymes are sensitive to micromolar amounts of pAp in vitro. We also demonstrate that Orn can degrade short DNA oligos in addition to its activity on RNA oligos, similar to what was documented for Sfn. pAp was shown to accumulate as a result of inhibition of the pAp-degrading enzyme by lithium, widely used to treat bipolar disorder, thus its regulatory targets are of significant medical interest. CysQ, the E.coli pAp-phosphatase is strongly inhibited by lithium and calcium in vitro and is a main target of lithium toxicity in vivo. Our findings point to remarkable conservation of the connection between sulfur- and RNA metabolism between E.coli and humans. 相似文献
16.
17.
18.
Matsumoto K Akao Y Yi H Ohguchi K Ito T Tanaka T Kobayashi E Iinuma M Nozawa Y 《Bioorganic & medicinal chemistry》2004,12(22):5799-5806
Our previous study has shown that alpha-mangostin, a xanthone from the pericarps of mangosteen, induces caspase-3-dependent apoptosis in HL60 cells. In the current study, we investigated the mechanism of apoptosis induced by alpha-mangostin in HL60 cells. Alpha-mangostin-treated HL60 cells demonstrated caspase-9 and -3 activation but not -8, which leads us to assume that alpha-mangostin may mediate the mitochondrial pathway in the apoptosis. Parameters of mitochondrial dysfunction including swelling, loss of membrane potential (deltapsim), decrease in intracellular ATP, ROS accumulation, and cytochrome c/AIF release, were observed within 1 or 2 h after the treatment. On the other hand, alpha-mangostin-treatment did not affect expression of bcl-2 family proteins and activation of MAP kinases. These findings indicate that alpha-mangostin preferentially targets mitochondria in the early phase, resulting in indication of apoptosis in HL60 cells. Furthermore, we examined the structure-activity relationship between xanthone derivatives including alpha-mangostin and the potency of deltapsim-loss in HL60 cells. Interestingly, replacement of hydroxyl group by methoxy group remarkably decreased its potency. It was also shown that the cytotoxicity substantially correlated with deltapsim decrease. These results indicate that alpha-mangostin and its analogs would be candidates for preventive and therapeutic application for cancer treatment. 相似文献
19.
20.
Beaufort N Wojciechowski P Sommerhoff CP Szmyd G Dubin G Eick S Kellermann J Schmitt M Potempa J Magdolen V 《The Biochemical journal》2008,410(1):157-165
The major opportunistic pathogen Staphylococcus aureus utilizes the human fibrinolytic system for invasion and spread via plasmin(ogen) binding and non-proteolytic activation. Because S. aureus secretes several proteases recently proposed as virulence factors, we explored whether these enzymes could add to the activation of the host's fibrinolytic system. Exposure of human pro-urokinase [pro-uPA (where uPA is urokinase-type plasminogen activator)] to conditioned growth media from staphylococcal reference strains results in an EDTA-sensitive conversion of the single-chain zymogen into its two-chain active form, an activity not observed in an aureolysin-deficient strain. Using purified aureolysin, we verified the capacity of this thermolysin-like metalloprotease to activate pro-uPA, with a 2.6 x 10(3) M(-1) x s(-1) catalytic efficiency. Moreover, activation also occurs in the presence of human plasma, as well as in conditioned growth media from clinical isolates. Finally, we establish that aureolysin (i) converts plasminogen into angiostatin and mini-plasminogen, the latter retaining its capacity to be activated by uPA and to hydrolyse fibrin, (ii) degrades the plasminogen activator inhibitor-1, and (iii) abrogates the inhibitory activity of alpha(2)-antiplasmin. Altogether, we propose that, in parallel with the staphylokinase-dependent activation of plasminogen, aureolysin may contribute significantly to the activation of the fibrinolytic system by S. aureus, and thus may promote bacterial spread and invasion. 相似文献