首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a better understanding of the role of mesopelagic fish in the Southern Ocean food web, the energy and water content of Bathylagus antarcticus, Electrona antarctica and Gymnoscopelus braueri from the Lazarev Sea were investigated. Mean dry weight energy content of B. antarcticus (20.4 kJ g−1) was significantly lower than in E. antarctica and G. braueri (both 29.4 kJ g−1). In E. antarctica, an increase of dry weight energy density with age was evident from 26.9 kJ g−1 in juveniles of less than 1 year of age to 32.0 kJ g−1 in 3-year-old fish. Water content decreased with size in all three species. Abundant high-energy species such as E. antarctica are at a key position in the food web. Due to a marked influence of age on energy content, population structure can be an important variable in estimates of energy fluxes in the Southern Ocean ecosystem.  相似文献   

2.
A technique for the accurate determination of lipid content of very small quantities of biological tissue was applied to two Antarctic oribatid mites,Alaskozetes antarcticus andHalozetes belgicae, and a collembolan,Cryptopygus antarcticus. Analysis of monthly samples of the three species, collected between November 1989 and March 1991, revealed little evidence of any seasonal pattern of lipid deposition or use. MaleAlaskozetes were the only exception, showing very low lipid levels for a short period of the austral summer, followed by rapid deposition before the onset of winter. Mean lipid contents of the three species over the study period were 10–15% of mean dry weight. There was evidence of a seasonal pattern of egg formation and oviposition in bothAlaskozetes andHalozetes, but this was not reflected in the observed lipid levels. Feeding activity was mostly restricted to the summer months (November–March); a temporary resumption of feeding in winter (late August 1990) was followed by an increase in lipid content in both sexes ofAlaskozetes.  相似文献   

3.
Antarctic soil ecosystems are amongst the most simplified on Earth and include only few soil arthropod species, generally believed to be opportunistic omnivorous feeders. Using stable isotopic analyses, we investigated the food choice of two common and widely distributed Antarctic soil arthropod species using natural abundances of 13C and 15N and an isotope labelling study. In the laboratory we fed the isotomid springtail Cryptopygus antarcticus six potential food sources (one algal species, two lichens and three mosses). Our results showed a clear preference for algae and lichens rather than mosses. These results were corroborated by field data comparing stable isotope signatures from the most dominant cryptogams and soil arthropods (C. antarcticus and the oribatid mite Alaskozetes antarcticus). Thus, for the first time in an Antarctic study, we present clear evidence that these soil arthropods show selectivity in their choice of food and have a preference for algae and lichens above mosses.  相似文献   

4.
Morphometric relationships, caloric content and biochemical composition of Neomysis mercedis were determined for freshly caught mysids. Strong positive correlations between telson length, carapace length, dry weight, energy content and total length are described by the equations: Ln (Dry weight) = –5.02 + 2.57* Ln (Total Length), Telson Length = 0.13* Total Length, and Energy (Calories) = –37.13 + 4.85* Mean Total Length. Energy (4.92 cal mg–1 AFDFW), ash (8.61% dry weight) and total Kjeldahl nitrogen (10.6% dry weight) content are comparable to values reported for other species. A comparison of the length-weight relationship for N. mercedis with similar equations published previously for other mysid species indicated that the predicted mean dry weight at any particular length varied among species.  相似文献   

5.
Twelve species of microalgae, isolated from north Australian marine, freshwater and hypersaline environments, were grown under controlled conditions of temperature, pH, photon flux density and salinity, and analysed for ash, total protein, water soluble carbohydrates, chlorophylla, total lipids, total fatty acids and fatty acid composition. Highest levels of the polyunsaturated fatty acid eicosapentaenoic acid [20:5(n-3)] were found in the marine diatoms.Nitzschia (frustulum) andN. closterium (23.1% and 15.2% of total fatty acids, respectively). None of the species studied had levels of docosahexaenoic acid [22:6(n-3)] greater than 1.1 % of total fatty acids. None of the chlorophyte species contained significant levels of either 20:5(n-3) or 22:6(n-3). The highest total fatty acid concentration of all species in the study was found in the freshwater chlorophyte speciesScenedesmus dimorphus (105 mg g–1 dry wt). The hypersaline speciesDunaliella salina had the highest total lipid content (28.1% dry wt), followed byN. closterium, N. (frustulum) andNavicula sp. (24.2–27.8% dry wt).Chlamydomonas sp. had the highest protein content (66.9% dry wt).N. (frustulum) was highlighted as a possible useful source of lipids and polyunsaturated fatty acids in mixed microalgal diets for mariculture organisms used in tropical aquaculture.Author for correspondence  相似文献   

6.
The field metabolic rates (FMR) and rates of water flux were measured in two species of varanid lizards over five periods of the year in tropical Australia. The energetics of these species were further investigated by directly measuring activity (locomotion) and body temperatures of free-ranging animals by radiotelemetry, and by measuring standard metabolic rate (over a range of body temperatures) and activity metabolism in the laboratory. Seasonal differences in the activity and energetics were found in these goannas despite similar, high daytime temperatures throughout the year in tropical Australia. Periods of inactivity were associated with the dry times of the year, but the onset of this period of inactivity differed with respect to habitat even within the same species. Varanus gouldii, which inhabit woodlands only, were inactive during the dry and late dry seasons. V. panoptes that live in the woodland had a similar seasonal pattern of activity, but V. panoptes living near the floodplain of the South Alligator River had their highest levels of activity during the dry season when they walked long distances to forage at the receding edge of the floodplain. However, during the late dry season, after the floodplain had dried completely, they too became inactive. For V. gouldii, the rates of energy expenditure were 196 kJ kg–1 day–1 for active animals and 66 kJ kg–1 day–1 for inactive animals. The rates of water influx for these groups were respectively 50.7 and 19.5 ml kg–1 day–1. For V. panoptes, the rates of energy expenditure were 143 kJ kg–1 day–1 for active animals and 56 kJ kg–1 day–1 for inactive animals. The rates of water influx for these two groups were respectively 41.4 and 21.0 ml kg–1 day–1. We divided the daily energy expenditure into the proportion of energy that lizards used when in burrows, out of burrows but inactive, and in locomotion for the two species during the different seasons. The time spent in locomotion by V. panoptes during the dry season is extremely high for a reptile (mean of 3.5 h/day spent walking), and these results provide an ecological correlate to the high aerobic capacity found in laboratory measurements of some species of varanids.  相似文献   

7.
Summary 108 successful ground and Agassiz trawl catches were taken between 155 and 2031 m depth in the eastern Weddell Sea on board RV Polarstern in spring and summer (October–February) 1985–1989. In addition, 7 hauls were taken with a semipelagic trawl. Only 19 hauls (16.5%) contained no shrimps. The others yielded large numbers of Notocrangon antarcticus, Chorismus antarcticus, and Nematocarcinus lanceopes as well as 20 Lebbeus antarcticus and 11 specimens of an Eualus species new to science. 8 Pasiphaea scotiae were caught in a pelagic krill trawl. No reptant decapod crustaceans were detected in the study area. Shrimp densities determined from trawl catches were lower than estimates derived from underwater photography but in the same order of magnitude. Although yields of the three common shrimp species in some cases exceeded 20 kg per 0.5 h haul, shrimp stocks in the area cannot be considered to be of commercial significance. A wider geographical distribution and greater frequency of shrimps in high Antarctic waters was found than described hitherto. There was considerable variation in numbers, sex composition, occurrence at different depths, and size-frequency distributions. C. antarcticus and N. antarcticus grow to a larger size compared with individuals from the Antarctic Peninsula area. Within the area of investigation, length frequency distributions are skewed towards larger sizes at higher latitudes. In the eastern Weddell Sea larger specimens of the three common species live at greater depths than smaller individuals. Potential reasons for these differences are discussed.AWI Publication No. 124  相似文献   

8.
Nannochloropsis sp. was grown semicontinuously with a rate of daily renewal of the culture media of 40% of the volume of the culture under different irradiances (40, 60, 80, 220 and 480 mol quanta m–2 s–1). Under the conditions tested, light saturation was achieved at 220 mol quanta m–2 s–1 with no significant increase in steady-state cell density or of dry weight productivity with higher irradiance, reaching values of 115 × 106 cells ml–1 and 375 mg l–1 day–1 respectively. C/N ratios clearly indicated the point of light saturation, decreasing with increasing irradiance for light-limited conditions and increasing for light-saturated conditions. Under light-limited conditions, an increase in the irradiance produced an increase in the protein percentage of the organic fraction to the detriment of lipids and carbohydrates, while small changes were recorded under light-saturated conditions. The degree of unsaturation of fatty acids was lower with increasing irradiance, with a three-fold decrease of the percentage of total n–3 fatty acids, from 29 to 8% of total fatty acids, caused mainly by a decrease of eicosapentaenoic acid (EPA) (20:5n–3). The microalga reached its maximal value of dry weight productivity (375 mg l–1 day–1), EPA productivity (3.2 mg l–1 day–1) and maximal protein content (36% of the organic content) at the point at which light saturation was achieved. Results demonstrate the efficiency of the use of the irradiance for the modification of the biochemical composition of Nannochloropsis sp.  相似文献   

9.
The water status of the collembolan Cryptopygtus antarcticus (Willem) was investigated from April 1984 to December 1987 at Signy Island, maritime Antarctic, by monthly field sampling to determine body water content. Water content, expressed either as the weight of water per unit dry weight or as a proportion of fresh weight, exhibited both a seasonal cycle and an upward trend over the 44-month study, both of which were highly significant. On an annual basis, body water content was at a minimum (1.21 g g?1) in July and maximal (1.98 g g?1) in September, whilst over the entire study water contents increased from 1.3 to 2.0 g g?1 (or 57-66% of fresh weight) calculated from the fitted linear regression line. Field water contents were below those found for this species in culture (2.9-5.9 g g?1). Individual C. antarcticus survived experimental loss of 20% of their body water with a resultant significant rise in haemolymph osmolarity from 285 to 397 mOsm L?1 and there was no evidence of osmoregulation under the experimental conditions of 20 °C and 35% relative humidity. The cuticular permeability (mean conductance) of individual Collembola in dry air increased exponentially with temperature over the range D-45 °C (Q10= 2.0) showing no control of water loss. The physiological response of C. antarcticus suggests that it experiences water stress in its maritime Antarctic habitats with significant seasonal variations of body water content, which correlate with annual cycles of water availability. It is concluded that the significant rise in its mean body water content over the 44-month field study was associated with increased glacial ablation due to higher levels of irradiation and windspeed making available more liquid water. Analyses of climate records for Signy Island from 1947 to 1990 showed that mean monthly air temperature rose by 0.93 °C over this period and by 2.29 °C during the 1980s, both statistically significant increases. Mean monthly windspeeds also increased significantly during 1970–90, and it is suggested that this parameter is the primary climatic driving force behind the increase in glacial ablation during the last two decades. The field water status of species such as C. antarcticus may reflect changes in the patterns of atmospheric circulation, associated with the circumpolar vortex, through increased ozone depletion due to increased tropospheric concentrations of halocarbons.  相似文献   

10.
Yenigül  Mesut 《Hydrobiologia》1993,(1):627-631
The chemical and gelling properties of agar from G. verrucosa collected from Izmit bay in Turkey at different months of the year were studied. Purification of agar was performed by using amylase treatment and isopropyl alcohol precipitation. The phycocolloid content was between 24.0–43.0% of the algal dry weight and was maximum in summer collected algae. Relative total sulfate and 3,6-anhydrogalactose content in the agar were determined from the ratios of infrared spectroscopy band intensities at 1250/2920 cm–1 and 930/2920 cm–1, respectively. 3,6-anhydrogalactose and sulfate contents were the highest in agar from algae collected from June until November and January until July, respectively. The gel strength of native agar were the highest from in autumn collected algae and increased to about 1250 N m–2 after alkali treatment. Thus, this study demonstrated that G. verrucosa from Turkey produces an agar with optimal chemical and gelling properties after alkali-treatment in fall and winter collected algae and may be used for industrial agar production.  相似文献   

11.
de Bakker  N.V.J.  van Beem  A.P.  van de Staaij  J.W.M.  Rozema  J.  Aerts  R. 《Plant Ecology》2001,154(1-2):237-246
The charophycean algal species Chara aspera was exposed for 73 days to three levels of UV-B radiation (weighted according to Caldwell's generalized plant action spectrum): 1.9 kJ m–2 day–1 (`no UV-B'), 6.4 KJ m–2 day–1 (ambient) and 10.5 kJ m–2 day–1 (enhanced UV-B), the latter level simulating 30% ozone reduction in The Netherlands.Charophycean algae are mainly freshwater organisms and are thought to be the algae most closely related to higher land plants. Therefore we expected that responses of charophycean algae to UV-B radiation might be more related to those observed in the higher land plants than those of other `lower' algal groups.Under elevated UV-B radiation algal length was reduced. There was no induction of UV absorbing compounds under enhanced UV-B. This might relate to a sensitive response to UV-B radiation. The charophycean algae show similar adaptations to UV-B radiation as terrestrial plants, while not having UV-screens as occur in many angiosperms. Vegetative reproduction (bulbils) increased in the presence of UV-B radiation, while generative reproduction (antheridia and oogonia) decreased.  相似文献   

12.
The existence of seasonal changes in concentrations of water-soluble carbohydrates in arthropods (both freezing-tolerant and intolerant species) from Signy Island was demonstrated. Seasonal patterns of variation, imposed by seasonality of the maritime Antarctic environment, in the production of soluble carbohydrates in response to low temperatures and/or dehydration for a range of terrestrial arthropods were confirmed. The freshwater copepod Pseudoboeckellapoppei exhibited much lower levels of soluble carbohydrates, with glycerol as the main component, and smaller seasonal fluctuations relative to the four terrestrial species. The two Antarctic mites (Alaskozetes antarcticus and Gamasellus racovitzai) accumulated glycerol (as a single-component cryoprotective system), in agreement with previous work reporting increased glycerol levels and lowering of the supercooling point in A. antarcticus. In the case of G. racovitzai, increased levels of glycerol may function in a different manner. The larval dipteran Eretmoptera murphyi and the collembolan Cryptopygus antarcticus have complex multi-component cryoprotective systems involving trehalose that may be related to low temperature acclimation and dehydration. These findings are discussed in relation to published work on single and multiple cryoprotective systems, supercooling points and the involvement of dehydration as a complementary stress in overwintering insects. Received: 28 February 1997 / Accepted: 20 October 1997  相似文献   

13.
C. Wiencke 《Polar Biology》1990,10(8):589-600
Summary The seasonal development of the endemic Antarctic Desmarestiales Himantothallus grandifolius, Phaeurus antarcticus, Desmarestia anceps, of a ligulate Desmarestia sp., of the Antarctic cold-temperate Adenocystis utricularis (Dictyosiphonales) and of the endemic Antarctic Ascoseira mirabilis (Ascoseirales) was monitored in a 2-year culture study under fluctuating daylengths mimicking the daylength conditions on King George Island (Antarctica). Temperature was kept constant at 0° C and nutrient levels were maintained at 0.6 moles m–3 nitrate and 0.025 moles m –3 phosphate. Sporophytes were initiated between (April-) June and July in all Desmarestiales. This event was controlled either by induction of gametophyte fertility (in H. grandifolius and D. anceps) or by induction of spore formation (in Desmarestia sp. and P. antarcticus). Young sporophytes of all species showed a growth optimum from September to December (-February). Desmarestia sp. and P. antarcticus produced spores and degenerated subsequently after one year of culture at 3 mol photons m–2 s–1 or after 22 months of culture at 2 mol m–2 s–1. In D. anceps spores were released without degeneration of the mother plants after 20 and 19 months of culture at 3 and 10 olm–2 s–1, respectively. In H. grandifolius spore formation was not observed. Adult one year old plants of the latter two perennial species showed growth optima between September and November. Microthalli of A. utricularis were the dominant life phase of this alga in winter. Macrothalli started to develop from June onwards at 3 mol m–2 s–1 or from August to September at 2 mol m–2 s–1. Growth rates of macrothalli cultivated at 9 mol m–2 s–1 showed a growth optimum from September to November. The macrothalli released spores from January to February. Macrothalli cultivated at 3 mol m–2 s–1 maximally grew in January. They became fertile after almost 2 years of culture at 3 mol m–2 s–1 and remained vegetative at 2 mol m–2 s–1. A. mirabilis exhibited a prominent growth optimum from August to October, at photon fluence rates between 2 and 47 mol m–2 s–1. A second optimum was evident from January to March in plants cultivated at 9 mol m–2 s–1. The results closely correspond to available field data and indicate that the phenology of the studied species can be controlled in the laboratory solely by simulating Antarctic daylengths conditions. The light requirements for growth were very low in microthalli and in juvenile macrothalli and growth was mostly light saturated at 4–12 mol m–2 s–1. Few-celled sporophytes of H. grandifolius and D. anceps tolerated at least 8 and 11 months of darkness. The minimum light demands for completion of the life cycle are 31.4 mol m–2 year–1 in Desmarestia sp., P. antarcticus and probably also in the 2 perennial Desmarestiales; 47.1 mol m–2 year–1 are needed in A. utricularis and probably also in A. mirabilis. These values predict a lower distribution limit of the investigated species at 53±23 m or 48±21 m in clear offshore waters and at 28±5 m or 26±5 m, respectively, in inshore fjords of the Antarctic Peninsula region.Contribution No. 281 of the Alfred-Wegener-Institut für Polar-u. Meeresforschung  相似文献   

14.
Summary I examined the digestive physiology of two avian frugivores, the golden-collared manakin, Manacus vitellinus, and the red-capped manakin, Pipra mentalis, to discover how these birds extract energy from fruit. Using 14 species of fruit in the natural diet of manakins, I examined the assimilation of nutrients from fruit pulp, fruit passage rates, seed passage rates, and gut morphology. Fruits in the manakins' diets had high water content (average, 84%) and low nutrient concentrations (3 kJ/g wet pulp; 17 kJ/g dry pulp; 1% nitrogen/g dry pulp). Manacus and Pipra did not differ in the average assimilation of energy in fruit pulp (63%), although it varied from 37 to 84% depending on fruit species. Assimilation of total nonstructural carbohydrates in the fruit pulp was very high (86–98%) in both species. Gut evacuation was rapid; maximum transit time of a labeled fruit was 30 min. Seeds passed through the gut faster (Manacus: 15 min; Pipra: 12 min) than the accompanying fruit epidermis (both spp: 22 min). Manakins regurgitated large seeds (>5 mm diameter) in 7 to 9 min. Rapid gut passage time, high assimilation of nonstructural carbohydrates, and the selective regurgitation and rapid elimination of bulky seeds enable manakins to process a large volume of food per day. By increasing rates of fruit intake and gut passage, manakins can effectively increase total nutrient uptake. These adaptations of manakins are requisite for harvesting sufficient nutrients from fruit, due to its low nutrient density, high water content, and bulky seeds.  相似文献   

15.
Deposition of faeces by black swans (Cygnus atratus Latham) feeding on benthic algae in a shallow New Zealand lake was determined by collection of faeces from the lake bottom and from the shore. The two methods showed good agreement after adjustment for the weight loss on immersion. The mean daily faecal output per swan was 52 g dry weight. The nitrogen content of the faeces averaged 2.3% of dry weight, and was dominated by soluble organic nitrogen (59% of total N). Phosphorus averaged 0.44% of dry weight, with 66% of it being particulate, and 30% soluble reactive phosphorus. Although faecal inputs of total phosphorus were sufficient to generate concentrations of 15–30 mg m–3, the faecal contributions of both N and P were only a minor component of the fluctuations observed in the lake, and were also small in relation to the total nutrient pool in the water and benthic algae. Waterfowl faeces appear to have low ratios of N to P, which will favour dominance of the phytoplankton by cyanobacteria in lakes where the faecal component of nutrient loads is large. The few data available suggest that the nitrogen content of waterfowl faeces is largely independent of that in their food. Food consumption, calculated by using cellulose as an indigestible faecal marker, was 104 g dry weight swan–1 d–1, a figure that appears low in relation to those for other swan species. Even the highest published figure for food intake by a swan is only about one half of the corresponding average metabolically-adjusted figures for geese, and we caution against the uncritical use of bioenergetic models for determining rates of food consumption and defaecation.  相似文献   

16.
Rozema  Jelte  Broekman  Rob  Lud  Daniela  Huiskes  Ad H.J.  Moerdijk  Tanja  de Bakker  Nancy  Meijkamp  Barbara  van Beem  Adri 《Plant Ecology》2001,154(1-2):101-115
Mini UV lamps were installed over antarctic plants at Léonie Island, Antarctic peninsula, and shoot length measurements of Deschampsia antarctica were performed during the austral summer January–February 1999.We studied the response of the antarctic hairgrass, Deschampsia antarctica to enhanced UV-B. In a climate room experiment we exposed tillers of Deschampsia antarctica, collected at Léonie Island, Antarctic peninsula, to ambient and enhanced levels of UV-B radiation. In this climate room experiment with 0, 2.5 and 5 kJ m–2 day–1 UV-BBE treatments we observed that length growth of shoots at 2.5 and 5 kJ m–2 day–1 UV-BBE was markedly reduced compared to 0 kJ m–2 day–1 UV-BBE. In addition, there was an increased number of shoots and increased leaf thickness with enhanced UV-B. The Relative Growth Rate (RGR) was not affected by UV-B, possibly because reduced shoot length growth by enhanced UV-B was compensated by increased tillering. Light response curves of net leaf photosynthesis of plants exposed to 5 kJ m–2 day–1 UV-BBE did not differ from those exposed to 0 kJ m–2 day–1 UV-BBE. The content of UV-B absorbing compounds of plants exposed to increasing UV-B did not significantly change.Mini UV-B lamp systems were installed in the field, to expose the terrestrial antarctic vegetation at Léonie Island to enhanced solar UV-B. In that study, the increment of shoot length of tagged plants of Deschampsia antarctica during the January-February 1999 at Léonie Island, was recorded and compared to shoot length growth under controlled conditions.The consequences of enhanced UV-B radiation as a result of ozone depletion for the terrestrial antarctic ecosytems are discussed.  相似文献   

17.
A local marine diatom, Nitzschia conspicua Grunow, was cultured in enriched synthetic seawater using flasks (agitated by magnetic stirring) and a 1.2 l fermenter. Lipids, fatty acids, proteins, carbohydrates and ash of the flask cultures were determined at various stages of growth (day 3, 5, 7, 10, 13, 15 and 17). The fermenter culture was harvested during the stationary phase for similar chemical analyses. N. conspicua attained a higher biomass concentration during the stationary phase when cultured in the fermenter (188 mg dry weight l–1) than in flasks (140–151 mg dry weight l–1). However, both systems showed similar specific growth rates based on chlorophyll-a concentration. Appreciable amounts of the essential fatty acids 20:4 (0.6–4.7% total fatty acids) and 20:5 (1.9–4.7% total fatty acids) are present in this diatom. Maximal amounts of these fatty acids were produced after 7 days' growth (i.e. 2 days after the end of the exponential phase). Lipids, fatty acids, proteins, carbohydrates and ash varied with culture age in N. conspicua.author for correspondence  相似文献   

18.
Synopsis Energy use and changes in whole-body content of lipid, protein, nitrogen, carbohydrate and ash were followed during metamorphosis of leptocephalous larvae of the bonefish (Albula). During metamorphosis, which requires about 8–12 days, larvae lost about 3–4 mg of lipid, or about 50% of the total lipid content. Lipid levels, calculated on a dry weight basis, showed no discernible trends, with values ranging from 138–185 mg (g dry wt)–1. Protein content was 8.4 mg per larva and showed no significant change. However, protein levels increased from 147 to 329 mg (g dry wt)–1. Nitrogen content decreased slightly from about 3.5 to 3.2 mg per larva. A comparison of protein and nitrogen values, expressed as % dry weight, showed that, in larvae which were just beginning to metamorphose, 70% of the total nitrogen was non-protein nitrogen (NPN). The NPN decreased to 58% of the total nitrogen towards the end of metamorphosis. Carbohydrate content fell from about 3.5 to 0.6 mg per larva, which represents an 83% loss. Carbohydrate levels also fell from about 81 to 32 mg (g dry wt)–1. In addition, most of the carbohydrate appears to be bound to protein. Ash content decreased by 52%, from 4.6 to 2.2 mg per larva. Caloric content fell slightly from about 182 to 141 calories per larva whereas caloric density showed no discernible trends, with values ranging from 4.180 to 4.725 kcal (g dry wt)–1. These results indicate that metamorphosing leptocephali, which apparently do not feed, probably derive most of their energy requirements from metabolizing endogenous lipid and carbohydrate stores formed during the premetamorphic interval.  相似文献   

19.
The concentrations of Cd, Pb, Cu and Zn inChironomus gr.thummi were determined for 4th instar larvae from the polluted Dyle River, tributary of the Scheldt River (Belgium). Comparison was made between larvae with deformed and normal menta. Deformed larvae showed higher overall metal concentrations than normal larvae. Especially Pb and Cu had higher concentrations in deformed larvae (16.22 mg kg–1 dry weight and 39.66 respectively) than in normal larvae (12.80 mg kg–1 dry weight and 35.70 respectively). No significant differences were found in the concentrations of Cd and Zn (mean [Cd] = 0.81 mg kg–1 dry weight and mean [Zn] = 313.12 mg kg–1 dry weight). There was no difference between the two larval groups as far as total length, dry weight and developmental stage of the imaginal discs are concerned.  相似文献   

20.
The sea stars Granaster nutrix and Neosmilaster georgianus are conspicuous members of benthic communities along the Antarctic Peninsula. An analysis of the proximate composition of somatic body components of nonreproductive adults indicates the nutrient storage organs (pyloric caeca) are rich in both protein (60.7 and 60.6% mean dry wt, respectively) and lipid (25.4 and 29.8% mean dry wt, respectively). Body-wall tissues, while containing small inconspicuous skeletal ossicles, are also comprised of significant levels of organic matter (33.5 and 55.7% mean dry wt, respectively), attributable primarily to protein. Both the pyloric caeca and body-wall tissues are relatively rich in energy (mean energy levels=24.8 and 26.5 kJ g−1 dry wt; 8.4 and 14.1 kJ g−1 dry wt, respectively). Despite the availability of these nutrients and energy neither sea star is preyed upon by the sympatric omnivorous sea star Odontaster validus, a common predator of other Antarctic sea stars. Laboratory feeding bioassays indicate that O. validus rejects live intact individuals and body-wall tissues of both sea star species while readily consuming dried krill. Alginate food pellets containing a krill powder and tissue level concentrations of organic methanol extracts of body-wall tissues were also rejected by O. validus. Moreover, the copious mucus released from the body wall of N. georgianus was deterrent in O. validus food pellet bioassays. Thus, both sea stars evidently possess defensive secondary metabolites that defend against predation and are likely to play a role in mediating materials and energy transfer in the Antarctic benthos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号