首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison of effects of two hypocholesterolemic drugs--mevinolin and glycyrrhizinic acid, on cholesterol and bile acid metabolism in cultured rabbit hepatocytes has been carried out. The following parameters have been determined: i) cholesterol synthesis from [2-14C]acetate; ii) bile acid production from newly synthesized and [4-14C]-labeled HDL2 cholesterol, and, iii) total cholesterol efflux into the incubation medium Mevinolin (0.5 microgram/ml) inhibited [2-14C] acetate incorporation into cholesterol by more than 90%. Conversely, glycyrrhizinic acid did not influence cholesterol synthesis even when used at high (100 micrograms/ml) concentrations but stimulated the conversion of endogenous (by 37%) and exogenous (by 18%) cholesterol into bile acids and increased, in addition, the proportion of bile acids in the total sterol pool released from hepatocytes into the incubation medium. At the same time, mevinolin used at 0.5 microgram/ml decreased the bile acid production by endogenous (by 27%) and exogenous (by 40%) cholesterol. The data obtained suggest that glycyrrhizinic acid exerts hypocholesterolemic action by stimulation of cholesterol conversion into bile acids without any effect on cholesterol synthesis. As for mevinolin, it has a cholesterol-suppressing effect via a mechanism of cholesterol synthesis inhibition only.  相似文献   

2.
The hormonal regulation of precursor incorporation into cellular lipids has been investigated in human lymphocytes stimulated with phytohemeagglutinine. Addition of thyroxine (5 micrograms/ml) for 72 h increased incorporation of [14C]acetate into the triacylglycerol fraction to 290% above the hormone-free control values. Incorporation into the cholesterol fraction was elevated up to 188% under the same conditions. Triiodothyronine was less effective than thyroxine: maximal effects were 153% of the control for triacylglycerols and 142% for cholesterol. Similar results were obtained when [14C]palmitic acid was used as a precursor for triacylglycerol synthesis. Effects of insulin on the parameters described were less pronounced than those obtained with thyroid hormones. Cellular triacylglycerol and protein contents were not elevated significantly by thyroid hormone addition. Further, incorporation of labelled thymidine, uridine, and leucine into acid-precipitable products was not elevated by triiodothyronine above mitogen-stimulated levels. It is concluded, that rapidly dividing lymphocytes provide a suitable system for studies concerning human lipid metabolism.  相似文献   

3.
We have investigated the effects of lipoproteins on sphingolipid metabolism in proximal renal tubular cells from normal subjects and low density lipoprotein (LDL) receptor-negative homozygous familial hypercholesterolemic subjects employing radioactive precursors, e.g. [3H]serine, [3H]glucose, and [14C]galactose. Compared to cells incubated with lipoprotein-deficient serum, maximum suppression (70-80%) of incorporation of [3H]glucose and [3H]serine into ceramide and LacCer occurred when the LDL concentration in the medium was 25 micrograms/ml medium, and addition of higher amounts of LDL (up to 500 micrograms/ml medium) to normal cells did not produce further suppression. In contrast, high density lipoproteins did not suppress the incorporation of [3H]glucose into lactosylceramide (LacCer) in normal cells. The incorporation of [14C] galactose into LacCer was also suppressed by LDL (50% suppression at a concentration of 100 micrograms/ml medium). In contrast, LDL modified by reductive methylation of lysine residues did not suppress the incorporation of [3H]glucose into LacCer and the incorporation of [3H]serine into ceramide, whereas, native LDL exerted a concentration-dependent suppression of [3H]serine incorporation into ceramide and sphingomyelin in normal cells. At high concentrations of LDL (50-500 micrograms/ml medium), the incorporation of [3H]glucose and [14C]galactose into LacCer in homozygous FH cells was stimulated approximately 2-fold. Maximum stimulation of [3H]serine incorporation into ceramides, LacCer, and sphingomyelin occurred at 100 micrograms LDL/ml medium. Our studies indicate that the endogenous synthesis of sphingolipids in normal renal cells is regulated by the LDL receptor. Modification of the lysine residues in LDL by reductive methylation results in the inability to suppress sphingolipid synthesis in normal cells. Lack of LDL receptors, as in the case of homozygous FH cells, results in the lack of suppression of endogenous sphingolipid synthesis.  相似文献   

4.
Mevinolin (lovastatin), a competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase, directly inhibited acyl-CoA cholesteryl acyltransferase in rabbit intestinal microsomes at a dose of 20 micrograms/ml or more. Lineweaver-Burk analysis showed a competitive type of inhibition with respect to oleoyl-CoA. In cultured intestinal Caco-2 cells, mevinolin reduced [14C]oleate incorporation into cholesteryl-esters by 86% of controls at doses as low as 0.1 micrograms/ml. However, in cells whose activity of acyl-CoA cholesteryl acyltransferase was stimulated 7-fold by 10 mM mevalonolactone, a significant inhibitory effect on cholesteryl-ester formation could not be detected, even at 40 micrograms/ml of mevinolin. In contrast, cells supplied with liposomal cholesterol or cholesterol derived from low-density lipoproteins showed a marked reduction of cholesteryl-ester formation in the presence of 10 or 0.1 micrograms/ml of mevinolin, respectively. It is concluded that the observed suppressive effects of mevinolin on cholesterol esterification in cultured Caco-2 cells are indirect and possibly caused by changes in the acyl-CoA cholesteryl acyltransferase substrate pool or intracellular cholesterol transport.  相似文献   

5.
Monolayer cultures of hepatocytes isolated from cholestyramine-fed rats and incubated in serum-free medium converted exogenous [4-14C]cholesterol into bile acids at a 3-fold greater rate than did cultures of hepatocytes prepared from untreated rats. Cholic acid and beta-muricholic acid identified and quantitated by gas-liquid chromatography and thin-layer chromatography were synthesized by cultured cells for at least 96 h following plating. The calculated synthesis rate of total bile acids by hepatocytes prepared from cholestyramine-fed animals was approximately 0.058 micrograms/mg protein/h. beta-Muricholic acid was synthesized at approximately a 3-fold greater rate than cholic acid in these cultures. Cultured hepatocytes rapidly converted the following intermediates of the bile acid pathway; 7 alpha-hydroxy[7 beta-3H]cholesterol, 7 alpha-hydroxy-4-[6 beta-3H] cholesten-3-one, and 5 beta-[7 beta-3H]cholestane-3 alpha, 7 alpha, 12 alpha-triol into bile acids. [24-14C]Chenodeoxycholic acid and [3H]ursodeoxycholic acid were rapidly biotransformed to beta-muricholic acid. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase activity measured in microsomes of cultured hepatocytes decreased during the initial 48 h following plating, but remained relatively constant for the next 72 h. In contrast, cholesterol 7 alpha-hydroxylase activity appeared to decrease during the first 48 h, followed by an increase over the next 48 h. Despite the apparent changes in enzyme activity in vitro, the rate of bile acid synthesis by whole cells during this time period remained constant. It is concluded that primary monolayer cultures of rat hepatocytes can serve as a useful model for studying the interrelationship between cholesterol and bile acid metabolism.  相似文献   

6.
The true rate of cholesterogenesis in cultured monocyte-macrophages was determined from the incorporation of [2-14C]acetate into cholesterol, using the desmosterol (cholesta-5,24-dien-3 beta-ol) that accumulated in the presence of the drug triparanol to estimate the specific radioactivity of the newly formed sterols. It was shown that this procedure could be successfully adapted for use with cultured monocytes despite the accumulation of other unidentified biosynthetic intermediates. In cells maintained in 20% (v/v) whole serum approx. 25% of the sterol carbon was derived from exogenous acetate. Cholesterol synthesis was as high in normal cells as in cells from homozygous familial hypercholesterolaemic (FH) subjects and accounted for 50% of the increase in cellular cholesterol. The addition of extra low-density lipoprotein (LDL) reduced cholesterol synthesis, apparently through a decrease in the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase). When incubated in lipoprotein-deficient serum some cells did not survive, but those that remained showed a normal increase in protein content; the amount of cellular protein and cholesterol in each well did not increase and cholesterol synthesis was reduced by over 80%. HMG-CoA reductase activity fell less dramatically and the proportion of sterol carbon derived from exogenous acetate increased, suggesting that the low rate of cholesterogenesis with lipoprotein-deficient serum was due to a shortage of substrate. The results indicate that under normal conditions monocyte-macrophages obtain cholesterol from endogenous synthesis rather than through receptor-mediated uptake of LDL, and that synthesis together with non-saturable uptake of LDL provides the majority of the cholesterol required to support growth.  相似文献   

7.
The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of [14C]cholesterol from [2-14C]acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of [14C]cholesterol from [2-14C]acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.  相似文献   

8.
Human blood monocytes cultured in medium containing 20% whole serum showed the greatest activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and [14C]acetate incorporation into non-saponifiable lipids around the 7th day after seeding, the period of greatest growth. Although there was enough low-density lipoprotein (LDL) in the medium to saturate the LDL receptors that were expressed by normal cells at that time, HMG-CoA reductase activity and acetate incorporation were as high in normal cells as in cells from familial-hypercholesterolaemic (FH) patients. Both the addition of extra LDL, which interacted with the cells by non-saturable processes, and receptor-mediated uptake of acetylated LDL significantly reduced reductase activity and increased incorporation of [14C]oleate into cholesteryl esters in normal cells and cells from FH patients ('FH cells'), and reduced the expression of LDL receptors in normal cells. Pre-incubation for 20h in lipoprotein-deficient medium apparently increased the number of LDL receptors expressed by normal cells but reduced the activity of HMG-CoA reductase in both normal and FH cells. During subsequent incubations the same rate of degradation of acetylated LDL and of non-saturable degradation of LDL by FH cells was associated with the same reduction in HMG-CoA reductase activity, although LDL produced a much smaller stimulation of oleate incorporation into cholesteryl esters. In normal cells pre-incubated without lipoproteins, receptor-mediated uptake of LDL could abolish reductase activity and the expression of LDL receptors. The results suggested that in these cells, receptor-mediated uptake of LDL might have a greater effect on reductase activity and LDL receptors than the equivalent uptake of acetylated LDL. It is proposed that endogenous synthesis is an important source of cholesterol for growth of normal cells, and that the site at which cholesterol is deposited in the cells may determine the nature and extent of the metabolic events that follow.  相似文献   

9.
Lipoprotein-deficient milieu, freshly isolated human peripheral blood lymphocytes lose about 50% of their membrane cholesterol into the medium within 8 h. The cholesterol loss is counter-regulated by de novo synthesis commencing after a lag phase of 8-12 h, and reaching a steady state within 24 h at a diminished membrane cholesterol level. About 50 micrograms free cholesterol/ml, offered in the form of low-density lipoproteins (LDL) and cholesterol/phosphatidylcholine liposomes, suppressed cholesterol synthesis to about 20% of that controls (lipoprotein-deficient culture). By contrast, pure phosphatidylcholine liposomes enhanced cholesterol synthesis to about 150% of control values. High-density lipoproteins (HDL) exerted a slightly suppressive effect on cholesterol synthesis only at high concentrations (greater than 100 micrograms HDL cholesterol/ml). HDL added to cultures containing fixed concentrations of LDL led to a dose-dependent neutralization of LDL suppression of cholesterol synthesis. Culture medium containing complete serum caused a suppression of cholesterol synthesis to about 50% of the control. The lesser reduction in cholesterol synthesis caused by complete serum compared with LDL or cholesterol/phosphatidylcholine liposomes can be explained by the presence of HDL in the former. Our results support the view that the cholesterol requirement of blood lymphocytes in their lipid-rich milieu is met by cholesterol neosynthesis as well as an exchange mechanism with surrounding lipoproteins. In our system, the cholesterol neosynthesis appears to be controlled by the ratio of LDL to HDL in the surrounding medium.  相似文献   

10.
The relationship between primary metabolism and biosynthesis of rubratoxin was studied with replacement cultures of Penicillium rubrum 3290. Synthesis of protein and RNA was measured by determining incorporation of [U14C]L-leucine and [214C]-uridine into the respective components of the fungal biomass. Rubratoxin formation was measured by determining incorporation of [114C]acetate into the toxin. Both protein and RNA were synthesized rapidly with synthesis increasing during 108 h of incubation and then decreasing rapidly. Rubratoxin formation increased up to 72 h, declined through 96 h, became maximal at 108 h, and then decreased rapidly. Cycloheximide, at 100 g/ml, moderately blocked accumulation of dry weight and protein synthesis by the mold; at 150 g/ml, cycloheximide completely blocked in vivo synthesis of protein. When cycloheximide was added to cultures after synthesis of toxin had begun, protein synthesis, but not toxin formation, was blocked. Inhibition of protein synthesis by cycloheximide was reversed by washing the drug out of mold cultures. Rubratoxin was formed throughout the incubation; a transitional phase, characteristic of secondary biosynthesis, was not observed.  相似文献   

11.
Large amounts of the sesquiterpenoid capsidiol accumulated in the media of tobacco (Nicotiana tabacum L. cv KY14) cell suspension cultures upon addition of fungal elicitor. Capsidiol accumulation was proportional to the amount of elicitor added. The accumulation of capsidiol was preceded by a transient increase in the capsidiol de novo synthesis rate as measured by the incorporation of exogenous [14C]acetate. Changes in 3-hydroxy-3-methylglutaryl-CoA reductase activity (HMGR; EC 1.1.1.34), an enzyme of general isoprenoid metabolism, paralleled the changes in [14C]acetate incorporation into capsidiol. Incubation of the cell cultures with mevinolin, a potent in vitro inhibitor of the tobacco HMGR enzyme activity, inhibited the elicitor-induced capsidiol accumulation in a concentration dependent manner. [14C]Acetate incorporation into capsidiol was likewise inhibited by mevinolin treatment. Unexpectedly, [3H] mevalonate incorporation into capsidiol was also partially inhibited by mevinolin, suggesting that mevinolin may effect secondary sites of sesquiterpenoid biosynthesis in vivo beyond HMGR. The data indicated the importance of the induced HMGR activity for capsidiol production in elicitor-treated tobacco cell suspension cultures.  相似文献   

12.
The purpose of this study was to examine the effects of cholesterol surface transfer between lipid vesicles and rat arterial smooth muscle cells on endogenous synthesis of cholesterol and phosphatidylcholine. Lipid vesicles containing cholesterol and egg phosphatidylcholine in different proportions were used as the extracellular lipid source. The rate of cellular cholesterol and phosphatidylcholine synthesis was determined from the [14C]acetate incorporation into these lipid classes. [3H]Cholesterol in lipid vesicles, with a cholesterol/phospholipid (C/P) mole ratio of 1:1, was rapidly transferred into rat smooth muscle cells, with a half-time of about 3.6 hours in the absence of serum proteins. Incubation of cells for 5 hours with vesicles of a high C/P mole ratio (i.e. 1.5:1) at vesicle-cholesterol concentrations above 100 micrograms/ml resulted in a marked reduction of cellular cholesterol synthesis, whereas the rate of phosphatidylcholine synthesis was increased. Cells incubated with lipid vesicles of C/P 1:2 did not show any change in cellular cholesterol or phosphatidylcholine synthesis. Incubation of cells with egg phosphatidylcholine vesicles at concentrations above 300 micrograms/ml, on the other hand, stimulated endogenous synthesis of cholesterol without affecting cellular phosphatidylcholine synthesis. The main conclusion is that cholesterol surface transfer may influence cellular lipid metabolism in the absence of mediating serum lipoproteins in a model system with cultured cells and lipid vesicles.  相似文献   

13.
Cells dissociated from brains of 1-day-old rats were cultured in medium containing either lipoprotein-deficient serum (LPDS) or LPDS plus various lipoprotein fractions. Increases in number of cells and in DNA content served as a measure of cell growth. Cholesterol synthesis was measured from the incorporation of [14C]acetate into total nonsaponifiable lipids and digitonin-precipitable sterols, and from the activity of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase. The data indicated that cholesterol biosynthesis from acetate was reduced in cells cultured in medium containing either LPDS plus low-density lipoproteins (LDL), high-density lipoproteins (HDL), or total lipoproteins (LP) and that this reduction was accompanied by a reduction in the activity of the HMG CoA reductase and an increase in the esterified sterol content. The reduction in cholesterol synthesis from acetate was maximal in cells cultured in the presence of HDL, whereas the maximal reduction in the activity of HMG CoA reductase occurred in cells cultured in the presence of LP. The presence of LDL or LP in the culture medium enhanced the cell growth but the presence of HDL did not. Esterified sterol content was highest in cells cultured in the medium containing LPDS plus LP and was not detected in cells cultured in LPDS medium. It is inferred from these data that rat brain glial cells in culture are able to utilize cholesterol in lipoproteins, that the presence of LDL in the medium enhances cell growth, and that reduced cholesterol synthesis in the presence of lipoproteins may occur at the HMG CoA reductase step as well as at some other step(s).  相似文献   

14.
Inhibition of a plant sesquiterpene cyclase by mevinolin   总被引:2,自引:0,他引:2  
The specificity of mevinolin as an inhibitor of sterol and sesquiterpene metabolism in tobacco cell suspension cultures was examined. Exogenous mevinolin inhibited [14C]acetate, but not [3H]mevalonate incorporation into free sterols. In contrast, mevinolin inhibited the incorporation of both [14C]acetate and [3H]mevalonate into capsidiol, an extracellular sesquiterpene. Microsomal 3-hydroxy-3-methylglutaryl Coenzyme A reductase was inhibited greater than 90% by microM mevinolin, while squalene synthetase was insensitive to even 600 microM mevinolin. Sesquiterpene cyclase, the first branch point enzyme specific for sesquiterpene biosynthesis, was inhibited in a dose-dependent manner by mevinolin with a 50% reduction in activity at 100 microM. Kinetic analysis indicated that the mechanism for inhibition was complex with mevinolin acting as both a competitive and noncompetitive inhibitor. The results suggest that the mevinolin inhibition of [3H]mevalonate incorporation into extracellular sesquiterpenes can, in part, be attributed to a secondary, but specific, site of inhibition, the sesquiterpene cyclase.  相似文献   

15.
The effect of inhibitors of β-hydroxy-β-methylglutaryl-coenzyme A (HMG-CoA) reductase such as low-density lipoprotein (LDL) and compactin were tested for their effects on the biosynthesis of ubiquinone in fibroblasts using [2-14C]acetic acid as a labeled precursor. LDL added to fibroblasts incubated in lipoprotein-deficient serum inhibited acetate incorporation into ubiquinone by 35%. Compactin, 2.5 μm, inhibited acetate incorporation by 60%. Further increases in compactin concentration up to 20 μm gradually increased the extent of inhibition but leveled off between 70 and 80%. The incorporation of 3H]mevalonic acid and 4-[U-14C]hydroxybenzoic acid into ubiquinone were determined with a range of compactin concentrations. Whereas the incorporation of [3H]mevalonate showed an apparent increase in response to compactin, the incorporation of 4-[U-14C]hydroxybenzoate into ubiquinone decreased. Both curves leveled off at concentrations of 5 μm did not significantly change with further increases in compactin concentration approaching 20 μm. Thus, the inhibition of acetate and 4-hydroxybenzoate incorporation into ubiquinone by compactin showed similar patterns. Cells incubated in lipoprotein-deficient serum compared to whole human serum showed inhibition of acetate incorporation similar to that observed previously for 4-hydroxybenzoate (9), thereby suggesting the presence of a stimulatory factor for ubiquinone biosynthesis in whole human serum. These data confirm and extend our earlier conclusions that inhibition of HMG-CoA reductase greatly affects ubiquinone synthesis in fibroblasts.  相似文献   

16.
We used monolayer cultured rat hepatocytes as an experimental model to study the secretion of the newly synthesized cholesterol by the liver. Cellular cholesterol was labeled by exposing cultured hepatocytes to [14C]acetate prior to the study of secretion. Secretion of the newly synthesized cholesterol was measured by extracting cholesterol in the culture medium and assaying for the radioactivity of [14C]cholesterol. We found that: (a) cultured hepatocytes could secrete newly synthesized cholesterol in serum-free medium; (b) secreted [14C]cholesterol was bound to macromolecule(s) and the secretion rate was not affected by cycloheximide for up to 5 h; (c) serum added to the culture medium greatly enhanced hepatic cholesterol secretion; (d) serum high-density lipoproteins were most effective, lipoprotein-deficient serum (d greater than 1.21) less effective in stimulating cholesterol secretion, whereas low-density and very-low-density lipoproteins had little effect; (e) when the serum-free culture medium was fractionated by ultracentrifugation, a major portion of the secreted [14C]cholesterol was found in the high-density lipoprotein fraction; (f) part of the medium [14C]cholesterol also turned up in the high-density lipoprotein fraction when lipoprotein-deficient serum was added as the acceptor; (g) secreted [14C]cholesterol was found only in free form, although some of the cellular [14C]cholesterol was found as esters.  相似文献   

17.
Mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, stimulates neurite outgrowth and acetylcholinesterase (ACE) activity in C1300 (Neuro-2A) murine neuroblastoma cells. Sprouting of neurites began within 4-8 h, before changes in cell proliferation could be detected by [3H]thymidine incorporation or flow cytometry. In contrast, the increase in ACE activity was temporally correlated with suppression of DNA synthesis, which occurred after 8 h. The activity of the membrane marker enzyme phosphodiesterase I was not stimulated by mevinolin. Suppression of protein synthesis with cycloheximide blocked the induction of ACE activity but only partially inhibited neurite outgrowth in the mevinolin-treated cultures. When mevinolin was removed from the culture medium, most of the cells retracted their neurites within 2 h, but ACE activity did not decline until DNA synthesis began to return to control levels after 10 h. Similarly, retraction of neurites in differentiated cells exposed to colchicine was not accompanied by a decrease in ACE activity. DNA histograms suggested that mevinolin arrests neuroblastoma cells in both the G1 and G2/M compartments of the cell cycle. Other cytostatic drugs that arrest cells at different stages of the cell cycle did not cause Neuro-2A cells to form neurites such as those seen in the mevinolin-treated cultures. When incorporation of [3H]acetate into isoprenoid compounds was studied in cultures containing mevinolin in concentrations ranging from 0.25 microM to 25 microM, the labeling of cholesterol, dolichol, and ubiquinone was suppressed by 90% or more at all concentrations. However, significant growth arrest and cell differentiation were observed only at the highest concentrations of mevinolin. Supplementing the medium with 100 microM mevalonate prevented the cellular response to mevinolin, but additions of cholesterol, dolichol, ubiquinone, or isopentenyl adenine were generally ineffective. The cholesterol content of neuroblastoma cells incubated with 25 microM mevinolin for 24 h was not diminished, and protein glycosylation, measured by [3H]mannose incorporation, was decreased only after 24 h at high mevinolin concentration. These studies suggest that the stimulation of neurite outgrowth and the increase in ACE activity induced by mevinolin are independent phenomena. Whereas neurite outgrowth is not related directly to the effects of mevinolin on cell cycling, the induction of ACE is correlated with the inhibition of cell proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
To study the effects of probucol on hepatic lipid metabolism, we used adult rat hepatocytes cultured on a feeder layer of 3T3 cells lethally treated with mitomycin C. These cultures synthesize and secrete for at least 2 weeks various lipids from [14C]acetate and [14C]oleate precursors. Treatment with 20 micrograms/ml of probucol for 7 and 14 days decreased the secretion of various radiolabeled lipid species to the culture medium and produced an intracytoplasmic accumulation of triacylglycerol droplets. The lipids whose secretion was most decreased were free and esterified cholesterol (50-70% reduction). Secretion of triacylglycerols and phospholipids was also reduced but to a lower extent. Intracytoplasmic triacylglycerols accumulated and the activity of glycerol phosphate dehydrogenase, a marker enzyme of glycerolipid synthesis, also increased (35-56%). The total incorporation of both radioactive precursors into free and esterified cholesterol and phospholipids was reduced 20-60%. Our data show that 2-week treatment of 3T3-hepatocyte cultures with pharmacological concentrations of probucol reduces significantly lipid secretion and suggest that at least part of the in vivo hypolipidemic effect of probucol could be attributed to a decrease in the secretion of lipids (i.e., lipoproteins) by hepatocytes.  相似文献   

19.
Stimulation of LDL receptor activity in Hep-G2 cells by a serum factor(s)   总被引:1,自引:0,他引:1  
The regulation of low-density lipoprotein (LDL) receptor activity in the human hepatoma cell line Hep-G2 by serum components was examined. Incubation of dense monolayers of Hep-G2 cells with fresh medium containing 10% fetal calf serum (FM) produced a time-dependent increase in LDL receptor activity. Uptake and degradation of 125I-LDL was stimulated two- to four-fold, as compared with that of Hep-G2 cells cultured in the same media in which they had been grown to confluence (CM); the maximal 125I-LDL uptake plus degradation increased from 0.2 microgram/mg cell protein/4 h to 0.8 microgram/mg cell protein/4 h. In addition, a two-fold increase in cell surface binding of 125I-LDL to Hep-G2 cells was observed when binding was measured at 4 degrees C. There was no change in the "apparent" Kd. The stimulation of LDL receptor activity was suppressed in a concentration-dependent manner by the addition of cholesterol, as LDL, to the cell medium. In contrast to the stimulation of LDL receptor activity, FM did not affect the uptake or degradation of 125I-asialoorosomucoid. Addition of FM increased the protein content per dish, and DNA synthesis was stimulated approximately five-fold, as measured by [3H]thymidine incorporation into DNA; however, the cell number did not change. Cellular cholesterol biosynthesis was also stimulated by FM; [14C]acetate incorporation into unesterified and esterified cholesterol was increased approximately five-fold. Incubation of Hep-G2 cells with high-density lipoproteins (200 micrograms protein/ml) or albumin (8.0 mg/ml) in the absence of the serum factor did not significantly increase the total processed 125I-LDL. Stimulation of LDL receptor activity was dependent on a heat-stable, nondialyzable serum component that eluted in the inclusion volume of a Sephadex G-75 column. Uptake of 125I-LDL by confluent monolayers of human skin fibroblasts was not changed by incubation with FM or by incubation with Hep-G2 conditioned medium. Taken together, these data demonstrate that LDL receptor activity in Hep-G2 cells is stimulated by a serum component. Furthermore, this serum factor shows some specificity for the LDL receptor pathway in liver-derived Hep-G2 cells.  相似文献   

20.
The amount of cholesterol and the percentage of esterified cholesterol were increased in transformed cells. The cholesterol synthesis from [14C] sodium acetate was reduced and cholesteryl oleate uptake increased by 3 fold in transformed cells. The activity of acyl coenzyme A-cholesterol-acyltransferase, measured in situ was also increased in transformed cells. Studies with 125I-LDL pointed out an increase of binding, and especially of internalization of LDL by transformed cells. Finally, long term culture in a lipoprotein-deficient medium showed that transformed cells exhibited a higher ability (tested by growth rate and cholesterol synthesis) to adapt themselves to lipid depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号