首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Erwinia herbicola is a nonphotosynthetic bacterium that is yellow pigmented due to the presence of carotenoids. When the Erwinia carotenoid biosynthetic genes are expressed in Escherichia coli, this bacterium also displays a yellow phenotype. The DNA sequence of the plasmid pPL376, carrying the entire Erwinia carotenoid gene cluster, has been found to contain 12 open reading frames (ORFs). Six of the ORFs have been identified as carotenoid biosynthesis genes that code for all the enzymes required for conversion of farnesyl pyrophosphate (FPP) to zeaxanthin diglucoside via geranylgeranyl pyrophosphate, phytoene, lycopene, -carotene, and zeaxanthin. These enzymatic steps were assigned after disruption of each ORF by a specific mutation and analysis of the accumulated intermediates. Carotenoid intermediates were identified by the absorption spectra of the colored components and by high pressure liquid chromatographic analysis. The six carotenoid genes are arranged in at least two operons. The gene coding for -carotene hydroxylase is transcribed in the opposite direction from that of the other carotenoid genes and overlaps with the gene for phytoene synthase.  相似文献   

2.
Various thermozeaxanthins are the end products of the carotenoid biosynthetic pathway of the thermophilic eubacterium Thermus thermophilus. These compounds are zeaxanthin glucoside esters. Carotenoid analysis and inhibitory studies led to the identification of most of the intermediates of the pathway: β-carotene, β-cryptoxanthin, zeaxanthin, and several new carotenoids. The intermediates, identified by various spectroscopic methods as β-cryptoxanthin glucoside esters carrying fatty acid moieties of different chain lengths, were designated as thermocryptoxanthins. The use of the inhibitors diphenylamine and 2-(4-chlorophenylthio)-triethylamine-HCl resulted in the accumulation of the intermediates phytoene, lycopene, and γ-carotene derivatives, which normally are present in amounts below the detection limit. The levels of non-esterified glycosides were extremely low. The results presented were used to establish the complete carotenoid biosynthetic pathway of T. thermophilus. Received: 9 September 1995 / Accepted: 14 February 1996  相似文献   

3.
In order to gain further insight into the partly-characterized carotenoid biosynthetic pathway in corn (Zea mays L.), we cloned cDNAs encoding the enzymes carotenoid isomerase (CRTISO) and β-carotene hydroxylase (BCH) using endosperm mRNA isolated from inbred line B73. For both enzymes, two distinct cDNAs were identified mapping to different chromosomes. The two crtiso cDNAs (Zmcrtiso1 and Zmcrtiso2) mapped to unlinked genes each containing 12 introns, a feature conserved among all crtiso genes studied thus far. ZmCRTISO1 was able to convert tetra-cis prolycopene to all-trans lycopene but could not isomerize the 15-cis double bond of 9,15,9′-tri-cis-ζ-carotene. ZmCRTISO2 is inactivated by a premature termination codon in B73 corn, but importantly the mutation is absent in other corn cultivars and the active enzyme showed the same activity as ZmCRTISO1. The two bch cDNAs (Zmbch1 and Zmbch2) mapped to unlinked genes each coding sequences containing five introns. ZmBCH1 was able to convert β-carotene into β-cryptoxanthin and zeaxanthin, but ZmBCH2 was able to form β-cryptoxanthin alone and had a lower overall activity than ZmBCH1. All four genes were expressed during endosperm development, with mRNA levels rising in line with carotenoid accumulation (especially zeaxanthin and lutein) until 25 DAP. Thereafter, expression declined for three of the genes, with only Zmcrtiso2 mRNA levels maintained by 30 DAP. We discuss the impact of paralogs with different expression profiles and functions on the regulation of carotenoid synthesis in corn.  相似文献   

4.

Background  

Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B) promoter from a green fruited S. habrochaites genotype EC520061.  相似文献   

5.
Genetic transformation using a micro-cross section (MCS) technique was conducted to improve the carotenoid content in kiwifruit (Actinidia deliciosa cv. Hayward). The introduced carotenoid biosynthetic genes include geranylgeranyl diphosphate synthase (GGPS), phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), β-carotene hydroxylase (CHX), and phytoene synthase (PSY). The transformed explants were selected on half-strength MS medium containing 0.001 mg l−1 of 2,4-D and 0.1 mg l−1 of zeatin, either 5 mg l−1 hygromycin or 25 mg l−1 kanamycin, and 500 mg l−1 cefotaxime. The genomic PCR, genomic Southern blot analysis, and RT-PCR were performed to confirm the integration and expression of the transgenes. The transformation efficiencies of either kanamycin- or hygromycin-resistant shoots ranged from 2.9 to 22.1% depending on the target genes, and from 2.9 to 24.2% depending on the reporter genes. The selection efficiencies ranged from 66.7 to 100% for the target genes and from 95.8 to 100% for the reporter genes. Changes of carotenoid content in the several PCR-positive plants were determined by UPLC analysis. As a result, transgenic plants expressing either GGPS or PSY increased about 1.2- to 1.3-fold in lutein or β-carotene content compared to non-transgenic plants. Our results suggest that the Agrobacterium-mediated transformation efficiency of kiwifruit can be greatly increased by this MCS method and that the carotenoid biosynthetic pathway can be modified in kiwifruit by genetic transformation. Our results further suggest that GGPS and PSY genes could be major target genes to increase carotenoid contents in kiwifruit.  相似文献   

6.
Erwinia herbicola is a nonphotosynthetic bacterium that is yellow pigmented due to the presence of carotenoids. When the Erwinia carotenoid biosynthetic genes are expressed in Escherichia coli, this bacterium also displays a yellow phenotype. The DNA sequence of the plasmid pPL376, carrying the entire Erwinia carotenoid gene cluster, has been found to contain 12 open reading frames (ORFs). Six of the ORFs have been identified as carotenoid biosynthesis genes that code for all the enzymes required for conversion of farnesyl pyrophosphate (FPP) to zeaxanthin diglucoside via geranylgeranyl pyrophosphate, phytoene, lycopene, β-carotene, and zeaxanthin. These enzymatic steps were assigned after disruption of each ORF by a specific mutation and analysis of the accumulated intermediates. Carotenoid intermediates were identified by the absorption spectra of the colored components and by high pressure liquid chromatographic analysis. The six carotenoid genes are arranged in at least two operons. The gene coding for β-carotene hydroxylase is transcribed in the opposite direction from that of the other carotenoid genes and overlaps with the gene for phytoene synthase.  相似文献   

7.
Oxycarotenoids, produced through the oxidation of carotenoids, play critical roles in plants. This reaction is mediated by a specific enzyme, β;-carotene hydroxylase, which adds hydroxyl groups to the β;-rings of carotenes. To investigate the effect of the β;-carotene hydroxylase gene (Chyb) on oxycarotenoid biosynthesis, we generated transgenicArabidopsis plants that over-expressedChyb under the control of a 35S promoter. Their levels of zeaxanthin and neoxanthin were two- to three-fold greater relative to the WT, while that of violaxanthin, a final product in the xanlthophyll pathway, was 1.3-fold higher than the control. In contrast, the amount of β;-carotene declined as much as 2.4-fold, depending on the particular transgenic line. Interestingly, astaxanthin was produced in the transgenics, but not in the WT. These data suggest that, with the aid of unknown factors in the host, carotenoids could be converted into metabolites in the astaxanthin biosynthetic pathway. Microarray analysis was used lo identify several genes that were consistently up-or down-regulated in transgenic chyB leaves compared with the controls. Here, we also discuss possible modifications in leaf carotenoids, and the importance of these data from a nutritional standpoint. These authors contributed equally to this work.  相似文献   

8.
The carotenoid composition of the astaxanthin-producing green alga Chlorella zofingiensis was investigated using high-performance liquid chromatography. Astaxanthin, adonixanthin, and zeaxanthin are the major carotenoids in this alga. The pigment pattern was characterized during the accumulation period, and in response to diphenylamine (DPA), an inhibitor of carotenoid biosynthesis. An increase in zeaxanthin followed by a decrease in xanthophyll was seen after the induction of astaxanthin biosynthesis by glucose. This biphasic kinetics of zeaxanthin was parallel to the marked increase in adonixanthin (from 0 mg g−1 to 0.21 mg g−1) and astaxanthin (from 0.05 mg g−1 to 0.35 mg g−1) and decrease of β-carotene (from 0.30 mg g−1 to 0.03 mg g−1). More importantly, unlike the Haematococcus alga, in which there was a high β-carotene accumulation after DPA treatment, C. zofingiensis showed an accumulation of extra zeaxanthin instead of β-carotene after treatment of the cells with DPA. All these results observed in vivo studies corroborate the observations in vitro studies at the enzyme level that zeaxanthin is a substrate for the carotenoid oxygenase in C. zofingiensis. It is suggested that zeaxanthin might be an important intermediate and not an end product of the biosynthetic pathway of astaxanthin. Therefore, a new pathway for astaxanthin formation by C. zofingiensis, which is different from that of the other astaxanthin-producing microorganisms, is proposed. An understanding of the astaxanthin biosynthetic pathway may yield important information toward the optimization of astaxanthin production, especially for the improvement of astaxanthin through genetic manipulations.  相似文献   

9.
The pathways from β-carotene to astaxanthin are crucial key steps for producing astaxanthin, one of industrially useful carotenoids, in heterologous hosts. Two β-carotene ketolases (β-carotene 4,4′-oxygenase), CrtO and CrtW, with different structure are known up to the present. In this paper, we compared the catalytic functions of a CrtO ketolase that was obtained from a marine bacterium Rhodococcus erythropolis strain PR4, CrtO derived from cyanobacterium Synechosistis sp. PCC6803, and CrtW derived from a marine bacterium Brevundimonas sp. SD212, by complementation analysis in Escherichia coli expressing the known crt genes. Results strongly suggested that a CrtO-type ketolase was unable to synthesize astaxanthin from zeaxanthin, i.e., only a CrtW-type ketolase could accept 3-hydroxy-β-ionone ring as the substrate. Their catalytic efficiency for synthesizing canthaxanthin from β-carotene was also examined. The results obtained up to the present clearly suggest that the bacterial crtW and crtZ genes are a combination of the most promising gene candidates for developing recombinant hosts that produce astaxanthin as the predominant carotenoid.  相似文献   

10.
The recently discovered non-mevalonate pathway to isoprenoids, which uses glycolytic intermediates, has been modulated by overexpression of Escherichia coli d-1-deoxyxylulose 5-phosphate synthase (DXS) to increase deoxyxylulose 5-phosphate and, consequently, increase the isoprenoid precursor pool in E. coli. Carotenoids are a large class of biologically important compounds synthesized from isoprenoid precursors and of interest for metabolic engineering. However, carotenoids are not ordinarily present in E. coli. Co-overexpression of E. coli dxs with Erwinia uredovora gene clusters encoding carotenoid biosynthetic enzymes led to an increased accumulation of the carotenoids lycopene or zeaxanthin over controls not expressing DXS. Thus, rate-controlling enzymes encoded by the carotenogenic gene clusters are responsive to an increase in isoprenoid precursor pools. Levels of accumulated carotenoids were increased up to 10.8 times the levels of controls not overexpressing DXS. Lycopene accumulated to a level as high as 1333 μg/g dw and zeaxanthin accumulated to a level as high as 592 μg/g dw, when pigments were extracted from colonies. Zeaxanthin-producing colonies grew about twice as fast as lycopene-producing colonies throughout a time course of 11 days. Metabolic engineering of carbon flow from simple glucose metabolites to representatives of the largest class of natural products was demonstrated in this model system. Received: 6 August 1999 / Received revision: 25 October 1999 / Accepted: 5 November 1999  相似文献   

11.
A Bacillus megaterium genomic fragment, which encoded an activator homologous to σ54 regulators and which was capable of activating Escherichia coli ato genes in trans, was detected in a gene library of B.␣megaterium screened for β-ketothiolase activity. The fragment presented only one complete open reading frame (ORF1), which encoded a protein of 398 amino acids. The recombinant plasmid complemented mutations in the Escherichia coli atoC regulatory gene. The constitutive expression of the E. coli ato operon mediated by ORF1 could be useful for the synthesis of polyhydroxyalkanoates with different flexibility properties by recombinant E. coli strains. Received: 20 October 1997 / Received revision: 18 February 1998 / Accepted: 23 February 1998  相似文献   

12.
Attached intact leaves of Schefflera arboricola grown at three different photon flux densities (PFDs) were subjected to 24-h exposures to a high PFD and subsequent recovery at a low PFD. While sun leaves showed virtually no sustained effects on photosystem II (PSII), shade-grown leaves exhibited pronounced photoinhibition of PSII that required several days at low PFD to recover. Upon transfer to high PFD, levels of nonphotochemical quenching in PSII as well as levels of zeaxanthin were initially low in shade leaves but continued to increase gradually during the 24-h exposure. The xanthophyll cycle pool size rose gradually during and also subsequent to the photoinhibitory treatment in shade leaves. Upon return to low PFD, a marked and extremely long-lasting retention of zeaxanthin and antheraxanthin was observed in shade but not sun leaves. During recovery, changes in the conversion state of the xanthophyll cycle therefore closely mirrored the slow increases in PSII efficiency. This novel report of a close association between zeaxanthin retention and lasting PSII depressions in these shade leaves clearly suggests a role for zeaxanthin in photoinhibition of shade leaves. In addition, there was a decrease in β-carotene levels, some decrease in chlorophyll, but no change in lutein and neoxanthin (all per leaf area) in the shade leaves during and subsequent to the photoinhibitory treatment. These data may be consistent with a degradation of a portion of core complexes but not of peripheral light-harvesting complexes. A possible conversion of β-carotene to form additional zeaxanthin is discussed. Received: 24 October 1997 / Accepted: 12 November 1997  相似文献   

13.
A carotenoid gene (crtR-B) from the green alga Haematococcus pluvialis, encoding β-carotene hydroxylase that was able to catalyze the conversion of β-carotene to zeaxanthin and canthaxanthin to astaxanthin, was cloned into Chlamydomonas reinhardtii chloroplast expression vector p64D to yield plasmid p64DcrtR-B. The vector p64DcrtR-B was transferred to the chloroplast genome of C. reinhardtii using micro-particle bombardment. PCR and Southern blot analyses indicated that crtR-B was integrated into the chloroplast genome of the transformants. RT-PCR assays showed that the H. pluvialis crt R-B gene was expressed in C. reinhardtii transformants. The transformants rapidly synthesized carotenoids in larger quantities than the wild-type upon being transferred from moderate to high-intensity white light. This research provides a foundation for further study to elucidate the possible mechanism of photo-protection by xanthophylls and other carotenoids in high light conditions or through exposure to UV radiation.  相似文献   

14.
In this study, we used the non-carotenogenic yeast Pichia pastoris X33 as a receptor for β-carotene-encoding genes, in order to obtain new recombinant strains capable of producing different carotenoidic compounds. We designed and constructed two plasmids, pGAPZA-EBI* and pGAPZA-EBI*L*, containing the genes encoding lycopene and β-carotene, respectively. Plasmid pGAPZA-EBI*, expresses three genes, crtE, crtB, and crtI*, that encode three carotenogenic enzymes, geranylgeranyl diphosphate synthase, phytoene synthase, and phytoene desaturase, respectively. The other plasmid, pGAPZA-EBI*L*, carried not only the three genes above mentioned, but also the crtL* gene, that encodes lycopene β-cyclase. The genes crtE, crtB, and crtI were obtained from Erwinia uredovora, whereas crtL* was cloned from Ficus carica (JF279547). The plasmids were integrated into P. pastoris genomic DNA, and the resulting clones Pp-EBI and Pp-EBIL were selected for either lycopene or β-carotene production and purification, respectively. Cells of these strains were investigated for their carotenoid contents in YPD media. These carotenoids produced by the recombinant P. pastoris clones were qualitatively and quantitatively analyzed by high-resolution liquid chromatography, coupled to photodiode array detector. These analyses confirmed that the recombinant P. pastoris clones indeed produced either lycopene or β-carotene, according to the integrated vector, and productions of 1.141 μg of lycopene and 339 μg of β-carotene per gram of cells (dry weight) were achieved. To the best of our knowledge, this is the first time that P. pastoris has been genetically manipulated to produce β-carotene, thus providing an alternative source for large-scale biosynthesis of carotenoids.  相似文献   

15.
We attempted to optimize the production of zeaxanthin in Escherichia coli by reordering five biosynthetic genes in the natural carotenoid cluster of Pantoea ananatis. Newly designed operons for zeaxanthin production were constructed by the ordered gene assembly in Bacillus subtilis (OGAB) method, which can assemble multiple genes in one step using an intrinsic B. subtilis plasmid transformation system. The highest level of production of zeaxanthin in E. coli (820 μg/g [dry weight]) was observed in the transformant with a plasmid in which the gene order corresponds to the order of the zeaxanthin metabolic pathway (crtE-crtB-crtI-crtY-crtZ), among a series of plasmids with circularly permuted gene orders. Although two of five operons using intrinsic zeaxanthin promoters failed to assemble in B. subtilis, the full set of operons was obtained by repressing operon expression during OGAB assembly with a pR promoter-cI repressor system. This result suggests that repressing the expression of foreign genes in B. subtilis is important for their assembly by the OGAB method. For all tested operons, the abundance of mRNA decreased monotonically with the increasing distance of the gene from the promoter in E. coli, and this may influence the yield of zeaxanthin. Our results suggest that rearrangement of biosynthetic genes in the order of the metabolic pathway by the OGAB method could be a useful approach for metabolic engineering.  相似文献   

16.
17.
18.
19.
Phaffia rhodozyma strains ATCC 24202, ATCC 24203, ATCC 24228, ATCC 24229, ATCC 24261, NRRL Y-10921, NRRL Y-10922 and NRRL Y-17268 were grown on culture media containing glucose, sucrose or xylose as carbon sources. Carotenoids were extracted from biomass and analyzed by HPLC with diode-array detection. The carotenoid profiles depended on both the strain considered and the carbon source employed. Astaxanthin, the main pigment found in P. rhodozyma, accounted for 42–91% of total carotenoids. Other carotenoids such as canthaxanthin, echinenone, 3-hydroxyechinenone, lycopene, 4-hydroxy-3′, 4′-didehydro-β-ψ-carotene and phoenicoxanthin were detected. The highest volumetric carotenoid concentration (3.60 mg L−1) was obtained with strain NRRL Y-17268 growing on xylose. In this case, astaxanthin accounted for 82% of total carotenoids. Received 29 May 1997/ Accepted in revised form 08 August 1997  相似文献   

20.
A versatile plasmid shuttle vector system was constructed, which is useful for genetic complementation of Helicobacter pylori strains or mutants with cloned genes of homologous or heterologous origin. The individual plasmid vectors consist of the minimal essential genetic elements, including an origin of replication for Escherichia coli, a H. pylori-specific replicon originally identified on a small cryptic H. pylori plasmid, an oriT sequence and a multiple cloning site. Shuttle plasmid pHel2 carries a chloramphenicol resistance cassette (cat GC) and pHel3 contains a kanamycin resistance gene (aphA-3) as the selectable marker; both are functional in E. coli and H. pylori. The shuttle plasmids were introduced into the H. pylori strain P1 by natural transformation. A efficiency of 7.0 × 10−7 and 4.7 × 10−7 transformants per viable recipient was achieved with pHel2 and pHel3, respectively, and both vectors showed stable, autonomous replication in H. pylori. An approximately 100-fold higher H. pylori transformation rate was obtained when the shuttle vectors for transformation were isolated from the homologous H. pylori strain, rather than E. coli, indicating that DNA restriction and modification mechanisms play a crucial role in plasmid transformation. Interestingly, both shuttle vectors could also be mobilized efficiently from E. coli into different H.␣pylori recipients, with pHel2 showing an efficiency of 2.0 × 10−5 transconjugants per viable H. pylori P1 recipient. Thus, DNA restriction seems to be strongly reduced or absent during conjugal transfer. The functional complementation of a recA-deficient H. pylori mutant by the cloned H. pylorirecA + gene, and the expression of the heterologous green fluorescent protein (GFP) in H.␣pylori demonstrate the general usefulness of␣this system, which will significantly facilitate the molecular analysis of H. pylori virulence factors in the future. Received: 22 April 1997 / Accepted: 4 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号