首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Thiosulfate dehydrogenase is known to play a significant role in thiosulfate oxidation in the acidophilic, obligately chemolithoautotroph, Acidithiobacillus ferrooxidans. Enzyme activity measured using ferricyanide as the electron acceptor was detected in cell extracts of A. ferrooxidans ATCC 23270 grown on tetrathionate or sulfur, but no activity was detected in ferrous iron-grown cells. The enzyme was enriched 63-fold from cell extracts of tetrathionate-grown cells. Maximum enzyme activity (13.8 U mg−1) was observed at pH 2.5 and 70°C. The end product of the enzyme reaction was tetrathionate. The enzyme reduced neither ubiquinone nor horse heart cytochrome c, which serves as an electron acceptor. A major protein with a molecular mass of ∼25 kDa was detected in the partially purified preparation. Heme was not detected in the preparation, according to the results of spectroscopic analysis and heme staining. The open reading frame of AFE_0042 was identified by BLAST by using the N-terminal amino acid sequence of the protein. The gene was found within a region that was previously noted for sulfur metabolism-related gene clustering. The recombinant protein produced in Escherichia coli had a molecular mass of ∼25 kDa and showed thiosulfate dehydrogenase activity, with maximum enzyme activity (6.5 U mg−1) observed at pH 2.5 and 50°C.  相似文献   

3.
氧化亚铁硫杆菌亚铁氧化系统的研究进展   总被引:2,自引:0,他引:2  
氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)为无机化能自养菌,革兰氏阴性,能在极端酸性环境中生长.由于在生物冶金中的应用及特殊的生理学效应,该菌受到研究者的广泛关注.A.ferrooxidans能氧化亚铁、元素硫及还原态硫化物获得电子,并通过一系列电子载体将电子传递给氧生成水,同时释放能量供生命活动需要.目前对A.ferrooxidans电子传递系统的研究主要集中于亚铁氧化电子传递系统,已发现多种与亚铁氧化电子传递相关电子载体和操纵子,如电子载体铜蓝蛋白(Rustocyanin,Rus)、细胞色素C(Cytochrome C,Cyc)、细胞色素C氧化酶(Cytochrome Coxidase,Cox)、亚铁氧化酶(Iro)、细胞色素bc1复合物(cytochrome bc1 complex,bc1)等,以及rus操纵子和pet操纵子.综述了近年来有关A.ferrooxidans 亚铁氧化电子传递链相关蛋白载体,rus和pet操纵子结构与功能及表达调控等方面的研究进展.  相似文献   

4.
Topological analysis with a phoA gene fusion suggested that Acidithiobacillus ferrooxidans MerC, a mercury transporter, has two periplasmic loops and four transmembrane domains. Cys-23 and Cys-26 of the protein were involved in Hg(2+)-recognition/uptake, but Cys-132 and Cys-137 were not. Escherichia coli cells producing the MerC were hypersensitive to CdCl(2). In this case, mutation of His72 rendered the host cells less CdCl(2) sensitive, whereas none of the Cys residues affected it. E. coli cells expressing the gene encoding a mercuric ion transporter (merC)-deletion mutant, in which the coding-sequence of the carboxy-terminal cytoplasmic region was removed, retained Hg(2+) hypersensitivity and showed about 55% HgCl(2) uptake ability compared to that of the one expressing the intact merC, indicating that the region is not essential for Hg(2+) uptake. Coexpression of A. ferrooxidans the gene encoding mercuric reductase (merA) and the merC deletion mutation conferred HgCl(2) tolerance to E. coli host cells. Under this condition, the merC deletion gene product was exclusively present as a monomer.  相似文献   

5.
6.
Post-translational modification of proteins is a ubiquitous mechanism of signal transduction in all kingdoms of life. One such modification is addition of O-linked N-acetylglucosamine to serine or threonine residues, known as O-GlcNAcylation. This unusual type of glycosylation is thought to be restricted to nucleocytoplasmic proteins of eukaryotes and is mediated by a pair of O-GlcNAc-transferase and O-GlcNAc hydrolase enzymes operating on a large number of substrate proteins. Protein O-GlcNAcylation is responsive to glucose and flux through the hexosamine biosynthetic pathway. Thus, a close relationship is thought to exist between the level of O-GlcNAc proteins within and the general metabolic state of the cell. Although isolated apparent orthologues of these enzymes are present in bacterial genomes, their biological functions remain largely unexplored. It is possible that understanding the function of these proteins will allow development of reductionist models to uncover the principles of O-GlcNAc signaling. Here, we identify orthologues of both O-GlcNAc cycling enzymes in the genome of the thermophilic eubacterium Thermobaculum terrenum. The O-GlcNAcase and O-GlcNAc-transferase are co-expressed and, like their mammalian orthologues, localize to the cytoplasm. The O-GlcNAcase orthologue possesses activity against O-GlcNAc proteins and model substrates. We describe crystal structures of both enzymes, including an O-GlcNAcase·peptide complex, showing conservation of active sites with the human orthologues. Although in vitro activity of the O-GlcNAc-transferase could not be detected, treatment of T. terrenum with an O-GlcNAc-transferase inhibitor led to inhibition of growth. T. terrenum may be the first example of a bacterium possessing a functional O-GlcNAc system.  相似文献   

7.
8.
Tetrathionate is one of the most important intermediates in dissimilatory sulfur oxidation and can itself be utilized as a sole energy source by some sulfur-oxidizing microorganisms. Tetrathionate hydrolase (4THase) plays a significant role in tetrathionate oxidation and should catalyze the initial step in the oxidative dissimilation when sulfur-oxidizing bacteria are grown on tetrathionate. 4THase activity was detected in tetrathionate-grown Acidithiobacillus ferrooxidans ATCC 23270 cells but not in iron-grown cells. A 4THase having a dimeric structure of identical 50kDa polypeptides was purified from tetrathionate-grown cells. The 4THase showed the maximum activity at pH 3.0 and high stability under acidic conditions. An open reading frame (ORF) encoding the N-terminal amino acid sequence of the purified 4THase was identified by a BLAST search using the database for the A. ferrooxidans ATCC 23270 genome. Heterologous expression of the gene in Escherichia coli resulted in the formation of inclusion bodies of the protein in an inactive form. Antisera against the recombinant protein clearly recognized the purified native 4THase, indicating that the ORF encoded the 4THase.  相似文献   

9.
10.
Plasmid profiles were studied in 27 Acidithiobacillus ferrooxidans strains isolated from different geographic zones and substrates differing in the composition of the main sulfide minerals, and also in experimentally obtained strains with acquired enhanced resistance to the ions of heavy metals (Fe, Ni, Cu, Zn, As). In 16 out of 20 strains isolated from different substrates, one to four 2- to 20-kb and larger plasmids were revealed. Plasmids were found in all five strains isolated from gold-containing pyrite-arsenopyrite ores and concentrates, in nine of 11 strains isolated from the ores and concentrates containing nonferrous metals, and in two of four strains isolated from the oxidation substrates of simple composition (mine waters, pyritized coals, active sludge). Changes in the plasmid profiles in some A. ferrooxidans strains (TFZ, TFI-Fe, TFV-1-Cu) with experimentally enhanced resistance to Zn2+, Fe3+, and Cu2+, respectively, were noted as compared with the initial strains. After 30 passages on S0-containing medium, strain TFBk showed changes in the copy number of plasmids. The role of plasmids in the processes of oxidation of energy substrates and in the acquired enhanced resistance to the heavy metal ions is discussed.  相似文献   

11.
Plasmid profiles were studied in 27 Acidithiobacillus ferrooxidans strains isolated from different geographic zones and substrates differing in composition of the main sulfide minerals, and also in experimentally obtained strains with acquired enhanced resistance to the ions of heavy metals (Fe, Ni, Cu, Zn, As). In 16 out of 20 strains isolated from different substrates, one to four 2- to 20-kb and larger plasmids were revealed. Plasmids were found in all five strains isolated from gold-containing pyrite–arsenopyrite ores and concentrates, in nine of 11 strains isolated from the ores and concentrates containing nonferrous metals, and in two of four strains isolated from the oxidation substrates of simple composition (mine waters, pyritized coals, active sludge). Changes in the plasmid profiles in some A. ferrooxidans strains (TFZ, TFI-Fe, TFV-1-Cu) with experimentally enhanced resistance to Zn2+, Fe3+, and Cu2+, respectively, were noted as compared with the initial strains. After 30 passages on a S0-containing medium, strain TFBk showed changes in the copy number of plasmids. The role of plasmids in the processes of oxidation of energy substrates and in the acquired enhanced resistance to heavy metal ions is discussed.  相似文献   

12.
13.
14.
15.
16.
17.
The genome of the acidophilic, proteobacterium Acidithiobacillusferrooxidans, contains linked but divergently oriented genes, termed afel and afeR, whose predicted protein products are significantly similar to the LuxI and LuxR families of proteins. A possible promoter and Lux box are predicted upstream of afel. A cloned copy of afel, expressed in E. coli, encodes an enzyme that catalyzes the production of a diffusible compound identified by gas chromatography and mass spectrometry as an unsubstituted N-acyl homoserine lactone (AHL) of chain length C14. This AHL can be detected by a reporter strain of Sinorhizobium meliloti Rm41 suggesting that it is biologically active. The reporter strain also responds to extracts of the supernatant of A. ferrooxidans grown to early stationary phase in sulfur medium indicating that a diffusible AHL is produced by this microorganism. Semi-quantitative RT-PCR experiments indicate that afeI and afeR are expressed maximally in early stationary phase and are more expressed when A. ferrooxidans is grown in sulfur--rather than iron-containing medium. Given the predicted amino acid sequence and functional properties of AfeI and AfeR it is proposed that A. ferrooxidans has a quorum sensing system similar to the LuxI-LuxR paradigm.  相似文献   

18.
Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination.  相似文献   

19.
To estimate the bioleaching performance of chalcopyrite for various hydraulic residence times (HRTs), laboratory-scale bioleaching of chalcopyrite concentrate was carried out in a continuous bubble column reactor with three different HRTs of 120, 80 and 40 h, respectively. An extraction rate and ratio of 0.578 g Cu l−1 h−1 and 39.7%, respectively, were achieved for an HRT of 80 h at a solids concentration of 10% (w/v). Lower bioleaching performances than this were obtained for a longer HRT of 120 h and a shorter HRT of 40 h. In addition, there was obvious competition between Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans to oxidize ferrous iron, causing large compositional differences between the microbial communitys obtained for the different HRTs. Leptospirillum ferriphilum and Acidithiobacillus thiooxidans were found to be the dominant microbes for the longer HRT (120 h). Acidithiobacillus ferrooxidans became the dominant species when the HRT was decreased. The proportion of Acidithiobacillus thiooxidans was comparatively constant in the microbial community throughout the three process stages.  相似文献   

20.
The Iro protein was proposed to be involved in the iron respiratory electron transport chain in Acidithiobacillus ferrooxidans, it is a member of HiPIP family with the iron-sulfur cluster for electron transfer. The gene of Iro protein from A. ferrooxidans Fe-1 was cloned and then successfully expressed in Escherichia coli, finally purified by one-step affinity chromatography to homogeneity. The recombinant protein was observed to be dimer. The molecular mass of a monomer containing the [Fe4S4] cluster was 6847.35 Da by MALDI-TOF-MS. The optical and EPR spectra results of the recombinant protein confirmed that the iron-sulfur cluster was correctly inserted into the active site of the protein. Molecular modelling for the protein revealed that Cys20, Cys23, Cys32 and Cys45 were in ligation with the iron-sulfur cluster, and Tyr10 was important for the stability of the [Fe4S4] cluster. As we know, this is the first report of expression in E. coli of the Iro protein from A. ferrooxidans Fe-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号