首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solidago canadensis is an invasive species from North America that is spreading across Europe, Australia and temperate Asia. We hypothesized that the species' wide ecological amplitude is also based on its potential in hydraulic acclimation, and analyzed hydraulic and anatomical properties along a transect with decreasing soil humidity. Stem hydraulic conductivity, vulnerability to drought‐induced embolism, stomatal closure during dehydration and xylem‐anatomical parameters were quantified at three sites. At the humid site, specific hydraulic conductivity of stems (1.0 ± 0.2 kg m–1 MPa–1 s–1) was about twofold higher, and leaf‐specific conductivity about 1.5 times higher (3.1 ± 0.5 kg m–1 MPa–1 s–1) than at the dry site. Water potential (Ψ) at 50% loss of conductivity was ?3.7 ± 0.1 MPa at the dry site and ?3.1 ± 0.2 MPa at the humid site (September). Vulnerability to drought‐induced embolism decreased along the transect and over the vegetation period. At drier sites, stomata started closing at lower Ψ while complete stomatal closure was reached at less negative Ψ (12% of maximum stomatal conductance: –2.5 ± 0.0 and ?3.0 ± 0.2 MPa at the dry and humid site). The safety margin between stomatal closure and 50% loss of conductivity was 1.2 and 0.2 MPa at the dry and humid sites. The observed variability indicated an efficient acclimation in hydraulic conductivity and safety: plants at dry sites exhibited lower specific hydraulic conductivity, higher embolism resistance and broader safety margins, signifying a trade‐off between the hydraulic safety and efficiency. The observed intraspecific plasticity in hydraulic and anatomical traits may help to explain the invasive potential of this species.  相似文献   

2.
Vaccinium myrtillus and Vaccinium vitis‐idaea are two dwarf shrubs widespread in the European Alps. We studied the hydraulics of these species hypothesizing that (1) the hydraulic architecture of dwarf shrubs differs from trees, (2) hydraulic properties reflect the species' ecological amplitude and (3) hydraulic properties vary spatially and seasonally. Key hydraulic parameters (osmotic potential, turgor loss point, xylem hydraulic conductivity, vulnerability to drought‐induced embolism, stomata closure, drought‐induced cell damage and embolism repair) and related wood anatomical traits (conduit diameter and conduit wall reinforcement) were analyzed at four sites in Tyrol, Austria. Both species exhibited low hydraulic safety as well as low hydraulic efficiency. Fifty percentage embolism accumulated at ?2.08 (V. myrtillus) and ?1.97 MPa (V. vitis‐idaea), 88% stomata closure was at ?2.19 and ?2.35 MPa, respectively. After drought, both species showed embolism repair on re‐watering. Site‐specific variation within species was low, while seasonal changes in embolism resistance and turgor loss point were observed. Results indicate that studied Vaccinium species have a high risk for embolism formation. This is balanced by refilling capacities, which are probably based on the small growth height of dwarf shrubs. V. vitis‐idaea, which occurs on drier sites, showed more efficient repair and a lower turgor loss point than V. myrtillus.  相似文献   

3.
Increases in drought‐induced tree mortality are being observed in tropical rain forests worldwide and are also likely to affect the geographical distribution of tropical vegetation. However, the mechanisms underlying the drought vulnerability and environmental distribution of tropical species have been little studied. We measured vulnerability to xylem embolism (P50) of 13 woody species endemic to New Caledonia and with different xylem conduit morphologies. We examined the relation between P50, along with other leaf and xylem functional traits, and a range of habitat variables. Selected species had P50 values ranging between ?4.03 and ?2.00 MPa with most species falling in a narrow range of resistance to embolism above ?2.7 MPa. Embolism vulnerability was significantly correlated with elevation, mean annual temperature and percentage of species occurrences located in rain forest habitats. Xylem conduit type did not explain variation in P50. Commonly used functional traits such as wood density and leaf traits were not related to embolism vulnerability. Xylem embolism vulnerability stands out among other commonly used functional traits as a major driver of species environmental distribution. Drought‐induced xylem embolism vulnerability behaves as a physiological trait closely associated with the habitat occupation of rain forest woody species.  相似文献   

4.
We examined the relationships between xylem resistance to cavitation and 16 structural and functional traits across eight unrelated Populus deltoides×Populus nigra genotypes grown under two contrasting water regimes. The xylem water potential inducing 50% loss of hydraulic conductance (Ψ50) varied from ?1.60 to ?2.40 MPa. Drought‐acclimated trees displayed a safer xylem, although the extent of the response was largely genotype dependant, with Ψ50 being decreased by as far as 0.60 MPa. At the tissue level, there was no clear relationship between xylem safety and either xylem water transport efficiency or xylem biomechanics; the only structural trait to be strongly associated with Ψ50 was the double vessel wall thickness, genotypes exhibiting a thicker double wall being more resistant. At the leaf level, increased cavitation resistance was associated with decreased stomatal conductance, while no relationship could be identified with traits associated with carbon uptake or bulk leaf carbon isotope discrimination, a surrogate of intrinsic water‐use efficiency. At the whole‐plant level, increased safety was associated with higher shoot growth potential under well‐irrigated regime only. We conclude that common trade‐offs between xylem resistance to cavitation and other physiological traits that are observed across species may not necessarily hold true at narrower scales.  相似文献   

5.
Xylem vulnerability to cavitation differs between tree species according to their drought resistance, more xerophilous species being more resistant to xylem cavitation. Variability in xylem vulnerability to cavitation is also found within species, especially between in situ populations. The origin of this variability has not been clearly identified. Here we analyzed the response of xylem hydraulic traits of Populus tremula×Populus alba trees to three different soil water regimes. Stem xylem vulnerability was scored as the xylem water potential causing 12, 50 and 88% loss of conductivity (P12, P50 and P88). Vulnerability to cavitation was found to acclimate to growing conditions under different levels of soil water content, with P50 values of ?1.82, ?2.03 and ?2.45 MPa in well‐watered, moderately water‐stressed and severely water‐stressed poplars, respectively. The value of P12, the xylem tension at which cavitation begins, was correlated with the lowest value of midday leaf water potential (ψm) experienced by each plant, the difference between the two parameters being approximately 0.5 MPa, consistent with the absence of any difference in embolism level between the different water treatments. These results support the hypothesis that vulnerability to cavitation is a critical trait for resistance to drought. The decrease in vulnerability to cavitation under growing conditions of soil drought was correlated with decreased vessel diameter, increased vessel wall thickness and a stronger bordered pit field (t/b)2. The links between these parameters are discussed.  相似文献   

6.
Background and AimsThe ability to avoid drought-induced embolisms in the xylem is one of the essential traits for plants to survive periods of water shortage. Over the past three decades, hydraulic studies have been focusing on trees, which limits our ability to understand how herbs tolerate drought. Here we investigate the embolism resistance in inflorescence stems of four Arabidopsis thaliana accessions that differ in growth form and drought response. We assess functional traits underlying the variation in embolism resistance amongst the accessions studied using detailed anatomical observations.MethodsVulnerability to xylem embolism was evaluated via vulnerability curves using the centrifuge technique and linked with detailed anatomical observations in stems using light microscopy and transmission electron microscopy.Key ResultsThe data show significant differences in stem P50, varying 2-fold from −1.58 MPa in the Cape Verde Island accession to −3.07 MPa in the woody soc1 ful double mutant. Out of all the anatomical traits measured, intervessel pit membrane thickness (TPM) best explains the differences in P50, as well as P12 and P88. The association between embolism resistance and TPM can be functionally explained by the air-seeding hypothesis. There is no evidence that the correlation between increased woodiness and increased embolism resistance is directly related to functional aspects. However, we found that increased woodiness is strongly linked to other lignification characters, explaining why mechanical stem reinforcement is indirectly related to increased embolism resistance.ConclusionsThe woodier or more lignified accessions are more resistant to embolism than the herbaceous accessions, confirming the link between increased stem lignification and increased embolism resistance, as also observed in other lineages. Intervessel pit membrane thickness and, to a lesser extent, theoretical vessel implosion resistance and vessel wall thickness are the missing functional links between stem lignification and embolism resistance.  相似文献   

7.
Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance‐related functional traits of a widespread gymnosperm (ponderosa pine – Pinus ponderosa) and angiosperm (trembling aspen – Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree‐to‐tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area‐to‐sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought‐related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms – a result that has important implications for process‐based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of trait variation across ranges, something rarely done in a range‐limit context, helps elucidate a mechanistic understanding of range constraints.  相似文献   

8.
Plant resistance to drought depends on timely stomatal closure   总被引:1,自引:0,他引:1       下载免费PDF全文
Stomata play a significant role in the Earth's water and carbon cycles, by regulating gaseous exchanges between the plant and the atmosphere. Under drought conditions, stomatal control of transpiration has long been thought to be closely coordinated with the decrease in hydraulic capacity (hydraulic failure due to xylem embolism). We tested this hypothesis by coupling a meta‐analysis of functional traits related to the stomatal response to drought and embolism resistance with simulations from a soil–plant hydraulic model. We report here a previously unreported phenomenon: the existence of an absolute limit by which stomata closure must occur to avoid rapid death in drought conditions. The water potential causing stomatal closure and the xylem pressure at the onset of embolism formation were equal for only a small number of species, and the difference between these two traits (i.e. safety margins) increased continuously with increasing embolism resistance. Our findings demonstrate the need to revise current views about the functional coordination between stomata and hydraulic traits and provide a mechanistic framework for modeling plant mortality under drought conditions.  相似文献   

9.
Coordination of stem and leaf hydraulic traits allows terrestrial plants to maintain safe water status under limited water supply. Tropical rain forests, one of the world's most productive biomes, are vulnerable to drought and potentially threatened by increased aridity due to global climate change. However, the relationship of stem and leaf traits within the plant hydraulic continuum remains understudied, particularly in tropical species. We studied within‐plant hydraulic coordination between stems and leaves in three tropical lowland rain forest tree species by analyses of hydraulic vulnerability [hydraulic methods and ultrasonic emission (UE) analysis], pressure‐volume relations and in situ pre‐dawn and midday water potentials (Ψ). We found finely coordinated stem and leaf hydraulic features, with a strategy of sacrificing leaves in favour of stems. Fifty percent of hydraulic conductivity (P50) was lost at ?2.1 to ?3.1 MPa in stems and at ?1.7 to ?2.2 MPa in leaves. UE analysis corresponded to hydraulic measurements. Safety margins (leaf P50 – stem P50) were very narrow at ?0.4 to ?1.4 MPa. Pressure‐volume analysis and in situ Ψ indicated safe water status in stems but risk of hydraulic failure in leaves. Our study shows that stem and leaf hydraulics were finely tuned to avoid embolism formation in the xylem.  相似文献   

10.
Variation in resistance of xylem to embolism among flowers, leaves, and stems strongly influences the survival and reproduction of plants. However, little is known about the vulnerability to xylem embolism under drought stress and their relationships to the anatomical traits of pits among reproductive and vegetative organs. In this study, we investigated the variation in xylem vulnerability to embolism in peduncles, petioles, and stems in a woody plant, Magnolia grandiflora. We analyzed the relationships between water potentials that induced 50% embolism (P50) in peduncles, petioles, and stems and the conduit pit traits hypothesized to influence cavitation resistance. We found that peduncles were more vulnerable to cavitation than petioles and stems, supporting the hypothesis of hydraulic vulnerability segmentation that leaves and stems are prioritized over flowers during drought stress. Moreover, P50 was significantly correlated with variation in the dimensions of inter-vessel pit apertures among peduncles, petioles and stems. These findings highlight that measuring xylem vulnerability to embolism in reproductive organs is essential for understanding the effect of drought on plant reproductive success and mortality under drought stress.  相似文献   

11.
Xylem network structure and function have been characterized for many woody plants, but less is known about fern xylem, particularly in species endemic to climates where water is a limiting resource for months at a time. We characterized seasonal variability in soil moisture and frond water status in a common perennial fern in the redwood understory of a costal California, and then investigated the consequences of drought‐induced embolism on vascular function. Seasonal variability in air temperature and soil water content was minimal, and frond water potential declined slowly over the observational period. Our data show that Polystichum munitum was protected from significant drought‐induced hydraulic dysfunction during this growing season because of a combination of cavitation resistant conduits (Air‐seeding threshold (ASP) = ?1.53 MPa; xylem pressure inducing 50% loss of hydraulic conductivity (P50) = ?3.02 MPa) and a soil with low moisture variability. High resolution micro‐computed tomography (MicroCT) imaging revealed patterns of embolism formation in vivo for the first time in ferns providing insight into the functional status of the xylem network under drought conditions. Together with stomatal conductance measurements, these data suggest that P. munitum is adapted to tolerate drier conditions than what was observed during the growing season.  相似文献   

12.
Cavitation resistance is a critical determinant of drought tolerance in tropical tree species, but little is known of its association with life history strategies, particularly for seasonal dry forests, a system critically driven by variation in water availability. We analysed vulnerability curves for saplings of 13 tropical dry forest tree species differing in life history and leaf phenology. We examined how vulnerability to cavitation (P50) related to dry season leaf water potentials and stem and leaf traits. P50‐values ranged from ?0.8 to ?6.2 MPa, with pioneers on average 38% more vulnerable to cavitation than shade‐tolerants. Vulnerability to cavitation was related to structural traits conferring tissue stress vulnerability, being negatively correlated with wood density, and surprisingly maximum vessel length. Vulnerability to cavitation was negatively related to the Huber‐value and leaf dry matter content, and positively with leaf size. It was not related to SLA. We found a strong trade‐off between cavitation resistance and hydraulic efficiency. Most species in the field were operating at leaf water potentials well above their P50, but pioneers and deciduous species had smaller hydraulic safety margins than shade‐tolerants and evergreens. A trade‐off between hydraulic safety and efficiency underlies ecological differentiation across these tropical dry forest tree species.  相似文献   

13.
Plants can be highly segmented organisms with an independently redundant design of organs. In the context of plant hydraulics, leaves may be less embolism resistant than stems, allowing hydraulic failure to be restricted to distal organs that can be readily replaced. We quantified drought‐induced embolism in needles and stems of Pinus pinaster using high‐resolution computed tomography (HRCT). HRCT observations of needles were compared with the rehydration kinetics method to estimate the contribution of extra‐xylary pathways to declining hydraulic conductance. High‐resolution computed tomography images indicated that the pressure inducing 50% of embolized tracheids was similar between needle and stem xylem (P50 needle xylem = ?3.62 MPa, P50 stem xylem = ?3.88 MPa). Tracheids in both organs showed no difference in torus overlap of bordered pits. However, estimations of the pressure inducing 50% loss of hydraulic conductance at the whole needle level by the rehydration kinetics method were significantly higher (P50 needle = ?1.71 MPa) than P50 needle xylem derived from HRCT. The vulnerability segmentation hypothesis appears to be valid only when considering hydraulic failure at the entire needle level, including extra‐xylary pathways. Our findings suggest that native embolism in needles is limited and highlight the importance of imaging techniques for vulnerability curves.  相似文献   

14.
Xylem structure and function are well described in woody plants, but the implications of xylem organization in less‐derived plants such as ferns are poorly understood. Here, two ferns with contrasting phenology and xylem organization were selected to investigate how xylem dysfunction affects hydraulic conductivity and stomatal conductance (gs). The drought‐deciduous pioneer species, Pteridium aquilinum, exhibits fronds composed of 25 to 37 highly integrated vascular bundles with many connections, high gs and moderate cavitation resistance (P50 = ?2.23 MPa). By contrast, the evergreen Woodwardia fimbriata exhibits sectored fronds with 3 to 5 vascular bundles and infrequent connections, low gs and high resistance to cavitation (P50 = ?5.21 MPa). Xylem‐specific conductivity was significantly higher in P. aqulinium in part due to its wide, efficient conduits that supply its rapidly transpiring pinnae. These trade‐offs imply that the contrasting xylem organization of these ferns mirrors their divergent life history strategies. Greater hydraulic connectivity and gs promote rapid seasonal growth, but come with the risk of increased vulnerability to cavitation in P. aquilinum, while the conservative xylem organization of W. fimbriata leads to slower growth but greater drought tolerance and frond longevity.  相似文献   

15.
Functional relationships between wood density and measures of xylem hydraulic safety and efficiency are ambiguous, especially in wet tropical forests. In this meta-analysis, we move beyond wood density per se and identify relationships between xylem allocated to fibers, parenchyma, and vessels and measures of hydraulic safety and efficiency. We analyzed published data of xylem traits, hydraulic properties and measures of drought resistance from neotropical tree species retrieved from 346 sources. We found that xylem volume allocation to fiber walls increases embolism resistance, but at the expense of specific conductivity and sapwood capacitance. Xylem volume investment in fiber lumen increases capacitance, while investment in axial parenchyma is associated with higher specific conductivity. Dominant tree taxa from wet forests prioritize xylem allocation to axial parenchyma at the expense of fiber walls, resulting in a low embolism resistance for a given wood density and a high vulnerability to drought-induced mortality. We conclude that strong trade-offs between xylem allocation to fiber walls, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Moreover, the benefits of xylem allocation to axial parenchyma in wet tropical trees might not outweigh the consequential low embolism resistance under more frequent and severe droughts in a changing climate.  相似文献   

16.
Compression wood is formed at the underside of conifer twigs to keep branches at their equilibrium position. It differs from opposite wood anatomically and subsequently in its mechanical and hydraulic properties. The specific hydraulic conductivity (ks) and vulnerability to drought‐induced embolism (loss of conductivity versus water potential ψ) in twigs of Norway spruce [Picea abies (L.) Karst.] were studied via cryo‐scanning electron microscope observations, dye experiments and a newly developed ‘Micro‐Sperry’ apparatus. This new technique enabled conductivity measurements in small xylem areas by insertion of syringe cannulas into twig samples. The hydraulic properties were related to anatomical parameters (tracheid diameter, wall thickness). Compression wood exhibited 79% lower ks than opposite wood corresponding to smaller tracheid diameters. Vulnerability was higher in compression wood despite its narrower tracheids and thicker cell walls. The P50 (ψ at 50% loss of conductivity) was ?3.6 MPa in opposite but only ?3.2 MPa in compression wood. Low hydraulic efficiency and low hydraulic safety indicate that compression wood has primarily a mechanical function.  相似文献   

17.
The ‘hydraulic vulnerability segmentation’ hypothesis predicts that expendable distal organs are more susceptible to water stress‐induced embolism than the main stem of the plant. In the current work, we present the first in vivo visualization of this phenomenon. In two separate experiments, using magnetic resonance imaging or synchrotron‐based microcomputed tomography, grapevines (Vitis vinifera) were dehydrated while simultaneously scanning the main stems and petioles for the occurrence of emboli at different xylem pressures (Ψx). Magnetic resonance imaging revealed that 50% of the conductive xylem area of the petioles was embolized at a Ψx of ?1.54 MPa, whereas the stems did not reach similar losses until ?1.9 MPa. Microcomputed tomography confirmed these findings, showing that approximately half the vessels in the petioles were embolized at a Ψx of ?1.6 MPa, whereas only few were embolized in the stems. Petioles were shown to be more resistant to water stress‐induced embolism than previously measured with invasive hydraulic methods. The results provide the first direct evidence for the hydraulic vulnerability segmentation hypothesis and highlight its importance in grapevine responses to severe water stress. Additionally, these data suggest that air entry through the petiole into the stem is unlikely in grapevines during drought.  相似文献   

18.
Drought‐induced tree mortality is expected to increase in future climates with the potential for significant consequences to global carbon, water, and energy cycles. Xylem embolism can accumulate to lethal levels during drought, but species that can refill embolized xylem and recover hydraulic function may be able to avoid mortality. Yet the potential controls of embolism recovery, including cross‐biome patterns and plant traits such as nonstructural carbohydrates (NSCs), hydraulic traits, and nocturnal stomatal conductance, are unknown. We exposed eight plant species, originating from mesic (tropical and temperate) and semi‐arid environments, to drought under ambient and elevated CO2 levels, and assessed recovery from embolism following rewatering. We found a positive association between xylem recovery and NSCs, and, surprisingly, a positive relationship between xylem recovery and nocturnal stomatal conductance. Arid‐zone species exhibited greater embolism recovery than mesic zone species. Our results indicate that nighttime stomatal conductance often assumed to be a wasteful use of water, may in fact be a key part of plant drought responses, and contribute to drought survival. Findings suggested distinct biome‐specific responses that partially depended on species climate‐of‐origin precipitation or aridity index, which allowed some species to recover from xylem embolism. These findings provide improved understanding required to predict the response of diverse plant communities to drought. Our results provide a framework for predicting future vegetation shifts in response to climate change.  相似文献   

19.
Xylem hydraulic characteristics govern plant water transport, affecting both drought resistance and photosynthetic gas exchange. Therefore, they play critical roles in determining the adaptation of different species to environments with various water regimes. Here, we tested the hypothesis that variation in xylem traits associated with a trade-off between hydraulic efficiency and safety against drought-induced embolism contributes to niche differentiation of tree species along a sharp water availability gradient on the slope of a unique river valley located in a semi-humid area. We found that tree species showed clear niche differentiation with decreasing water availability from the bottom towards the top of the valley. Tree species occupying different positions, in terms of vertical distribution distance from the bottom of the valley, showed a strong trade-off between xylem water transport efficiency and safety, as evidenced by variations in xylem structural traits at both the tissue and pit levels. This optimized their xylem hydraulics in their respective water regimes. Thus, the trade-off between hydraulic efficiency and safety contributes to clear niche differentiation and, thereby, to the coexistence of tree species in the valley with heterogeneous water availability.  相似文献   

20.
Resistance to water‐stress induced cavitation is an important indicator of drought tolerance in woody species and is known to be intimately linked to the anatomy of the xylem. However, the actual mechanical properties of the pit membrane are not well known and the exact mode of air‐seeding by which cavitation occurs is still uncertain. We examined the relationship between cavitation resistance and bordered pit structure and function in 40 coniferous species. Xylem pressure inducing 50% loss of hydraulic conductance (P50, a proxy for cavitation resistance) varied widely among species, from ?2.9 to ?11.3 MPa. The valve effect of the pit membrane, measured as a function of margo flexibility and torus overlap, explained more variation in cavitation‐resistance than simple anatomical traits such as pit membrane, pit aperture or torus size. Highly cavitation resistant species exhibited both a high flexibility of the margo and a large overlap between the torus and the pit aperture, allowing the torus to tightly seal the pit aperture. Our results support the hypothesis of seal capillary‐seeding as the most likely mode of air‐seeding, and suggest that the adhesion of the torus to the pit border may be the main determinant of cavitation resistance in conifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号