首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strigolactones (SL) fulfil important roles in plant development and stress tolerance. Here, we characterized the role of SL in the dark chilling tolerance of pea and Arabidopsis by analysis of mutants that are defective in either SL synthesis or signalling. Pea mutants (rms3, rms4, and rms5) had significantly greater shoot branching with higher leaf chlorophyll a/b ratios and carotenoid contents than the wild type. Exposure to dark chilling significantly decreased shoot fresh weights but increased leaf numbers in all lines. Moreover, dark chilling treatments decreased biomass (dry weight) accumulation only in rms3 and rms5 shoots. Unlike the wild type plants, chilling‐induced inhibition of photosynthetic carbon assimilation was observed in the rms lines and also in the Arabidopsis max3‐9, max4‐1, and max2‐1 mutants that are defective in SL synthesis or signalling. When grown on agar plates, the max mutant rosettes accumulated less biomass than the wild type. The synthetic SL, GR24, decreased leaf area in the wild type, max3‐9, and max4‐1 mutants but not in max2‐1 in the absence of stress. In addition, a chilling‐induced decrease in leaf area was observed in all the lines in the presence of GR24. We conclude that SL plays an important role in the control of dark chilling tolerance.  相似文献   

2.
The recently discovered group of plant hormones, the strigolactones, have been implicated in regulating photomorphogenesis. We examined this extensively in our strigolactone synthesis and response mutants and could find no evidence to support a major role for strigolactone signaling in classic seedling photomorphogenesis (e.g. elongation and leaf expansion) in pea (Pisum sativum), consistent with two recent independent reports in Arabidopsis. However, we did find a novel effect of strigolactones on adventitious rooting in darkness. Strigolactone‐deficient mutants, Psccd8 and Psccd7, produced significantly fewer adventitious roots than comparable wild‐type seedlings when grown in the dark, but not when grown in the light. This observation in dark‐grown plants did not appear to be due to indirect effects of other factors (e.g. humidity) as the constitutively de‐etiolated mutant, lip1, also displayed reduced rooting in the dark. This role for strigolactones did not involve the MAX2 F‐Box strigolactone response pathway as Psmax2 f‐box mutants did not show a reduction in adventitious rooting in the dark compared with wild‐type plants. The auxin‐deficient mutant bushy also reduced adventitious rooting in the dark, as did decapitation of wild‐type plants. Rooting was restored by the application of indole‐3‐acetic acid (IAA) to decapitated plants, suggesting a role for auxin in the rooting response. However, auxin measurements showed no accumulation of IAA in the epicotyls of wild‐type plants compared with the strigolactone synthesis mutant Psccd8, suggesting that changes in the gross auxin level in the epicotyl are not mediating this response to strigolactone deficiency.  相似文献   

3.
4.
Recent studies of transgenic poplars over‐expressing the genes gsh1 and gsh2 encoding γ‐glutamylcysteine synthetase (γ‐ECS) and glutathione synthetase, respectively, provided detailed information on regulation of GSH synthesis, enzymes activities and mRNA expression. In this experiment, we studied quantitative parameters of leaves, assimilating tissues, cells and chloroplasts, mesophyll resistance for CO2 diffusion, chlorophyll and carbohydrate content in wild‐type poplar and transgenic plants over‐expressing gsh1 in the cytosol after 3 years of growth in relatively clean (control) or heavy metal‐contaminated soil in the field. Over‐expression of gsh1 in the cytosol led to a twofold increase of intrafoliar GSH concentration and influenced the photosynthetic apparatus at different levels of organisation, i.e., leaves, photosynthetic cells and chloroplasts. At the control site, transgenic poplars had a twofold smaller total leaf area per plant and a 1.6‐fold leaf area per leaf compared to wild‐type controls. Annual aboveground biomass gain was reduced by 50% in the transgenic plants. The reduction of leaf area of the transformants was accompanied by a significant decline in total cell number per leaf, indicating suppression of cell division. Over‐expression of γ‐ECS in the cytosol also caused changes in mesophyll structure, i.e., a 20% decrease in cell and chloroplast number per leaf area, but also an enhanced volume share of chloroplasts and intercellular airspaces in the leaves. Transgenic and wild poplars did not exhibit differences in chlorophyll and carotenoid content of leaves, but transformants had 1.3‐fold fewer soluble carbohydrates. Cultivation on contaminated soil caused a reduction of palisade cell volume and chloroplast number, both per cell and leaf area, in wild‐type plants but not in transformants. Biomass accumulation of wild‐type poplars decreased in contaminated soil by more than 30‐fold, whereas transformants showed a twofold decrease compared to the control site. Thus, poplars over‐expressing γ‐ECS in the cytosol were more tolerant to heavy metal stress under field conditions than wild‐type plants according to the parameters analysed. Correlation analysis revealed strong dependence of cell number per leaf area unit, chloroplast parameters and mesophyll resistance with the GSH level in poplar leaves.  相似文献   

5.
6.
Boron (B) is an essential micronutrient for plants, but the molecular mechanisms underlying the uptake and distribution of B in allotetraploid rapeseed (Brassica napus) are unclear. Here, we identified a B transporter of rapeseed, BnaC4.BOR1;1c, which is expressed in shoot nodes and involved in distributing B to the reproductive organs. Transgenic Arabidopsis plants containing a BnaC4.BOR1;1c promoter‐driven GUS reporter gene showed strong GUS activity in roots, nodal regions of the shoots and immature floral buds. Overexpressing BnaC4.BOR1;1c in Arabidopsis wild type or in bor1‐1 mutants promoted wild‐type growth and rescued the bor1‐1 mutant phenotype. Conversely, knockdown of BnaC4.BOR1;1c in a B‐efficient rapeseed line reduced B accumulation in flower organs, eventually resulting in severe sterility and seed yield loss. BnaC4.BOR1;1c RNAi plants exhibited large amounts of disintegrated stigma papilla cells with thickened cell walls accompanied by abnormal proliferation of lignification under low‐B conditions, indicating that the sterility may be a result of altered cell wall properties in flower organs. Taken together, our results demonstrate that BnaC4.BOR1;1c is a AtBOR1‐homologous B transporter gene expressing in both roots and shoot nodes that is essential for the developing inflorescence tissues, which highlights its diverse functions in allotetraploid rapeseed compared with diploid model plant Arabidopsis.  相似文献   

7.
Silicon (Si) has been reported to enhance plant resistance against biotic and abiotic stressors and also benefit plant growth. These effects are more pronounced in grass species, especially with soil‐applied Si. This study investigated the effects of Si application on rice resistance to Spodoptera frugiperda development and plant vegetative growth. Effects of Si on rice were assessed via soil and foliar applications and compared with untreated plants (control). Si was soil‐ and foliar‐applied as 1% silicic acid solution at a dosage equivalent to 1.4 t Si per ha. After application, leaf material was collected from Si‐treated and untreated plants and placed in Petri dishes with individual S. frugiperda neonate larvae, where development was followed to adult emergence and biological parameters recorded. Vegetative growth parameters recorded in rice plants were the height, chlorophyll content, fresh and dry weights of shoots, and shoot Si content. No effects of Si application were observed on the durations of larval and pupal stages, larval and pupal survival, and sex ratio of S. frugiperda. Insects fed leaves from Si‐treated plants exhibited lower leaf consumption, larval and pupal weights, longevity of males and females, number of eggs, and egg viability. The negative effects were correlated with higher rice Si content. Si application to rice increased plant height, chlorophyll content and dry weight. Our study demonstrates that foliar‐applied Si is as efficient as soil‐applied Si in negatively affecting S. frugiperda development and providing beneficial effects on rice plant growth.  相似文献   

8.
9.
Uptake of CO2 by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard‐cell anion release channel SLOW ANION CHANNEL‐ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard‐cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non‐invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long‐term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild‐type plants responded to CO2, light, humidity, ozone and abscisic acid (ABA) in a guard cell‐specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild‐type plants, leaves from well‐watered ost1 plants exposed to a dry atmosphere wilted after light‐induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root–shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.  相似文献   

10.
Plant architecture plasticity determines the efficiency at harvesting and plays a major role defining biomass and seed yield. We observed that several previously described transgenic genotypes exhibiting increased seed yield also show wider stems and more vascular bundles than wild‐type plants. Here, the relationship between these characteristics and seed yield was investigated. Hanging weight on the main stem of Arabidopsis plants provoked significant stem widening. Such widening was accompanied by an increase in the number of vascular bundles and about 100% of yield increase. In parallel, lignin deposition diminished. Vascular bundle formation started in the upper internode and continued downstream. AUX/LAX carriers were essential for this response. The increase of vascular bundles was reverted 3 weeks after the treatment leading to an enlarged xylem area. Aux1, lax1, and lax3 mutant plants were also able to enlarge their stems after the treatment, whereas lax2 plants did not. However, none of these mutants exhibited more vascular bundles or seed yield compared with untreated plants. Weight‐induced xylem area enhancement and increased seed yield were also observed in sunflower plants. Altogether these results showed a strong correlation between the number of vascular bundles and enhanced seed yield under a long‐day photoperiod. Furthermore, changes in the levels of auxin carriers affected both these processes in the same manner, suggesting that there may be an underlying causality.  相似文献   

11.
Slow anion channels (SLAC/SLAH) are efflux channels previously shown to be critical for stomatal regulation. However, detailed analysis using the β‐glucuronidase reporter gene showed that members of the SLAC/SLAH gene family are predominantly expressed in roots, in addition to stomatal guard cells, implicating distinct function(s) of SLAC/SLAH in the roots. Comprehensive mutant analyses of all slac/slah mutants indicated that slah3 plants showed a greater growth defect than wild‐type plants when ammonium was supplied as the sole nitrogen source. Ammonium toxicity was mimicked by acidic pH in nitrogen‐free external medium, suggesting that medium acidification by ammonium‐fed plants may underlie ammonium toxicity. Interestingly, such toxicity was more severe in slah3 mutants and, particularly in wild‐type plants, was alleviated by supplementing the media with micromolar levels of nitrate. These data thus provide evidence that SLAH3, a nitrate efflux channel, plays a role in nitrate‐dependent alleviation of ammonium toxicity in plants.  相似文献   

12.
Based on the observation that Acidovorax citrulli switches from saprobic to pathogenic growth for seed‐to‐seedling transmission of bacterial fruit blotch of cucurbits (BFB), we hypothesized that quorum sensing (QS) was involved in the regulation of this process. Using aacI (luxI homologue) and aacR (luxR homologue) mutants of AAC00‐1, we investigated the role of QS in watermelon seed colonization and seed‐to‐seedling transmission of BFB. aacR and aacI mutants of AAC00‐1 colonized germinating watermelon seed at wild‐type levels; however, BFB seed‐to‐seedling transmission was affected in a cell density‐dependent manner. There were no significant differences in BFB seedling transmission between watermelon seed infiltrated with approximately 1 × 106 CFU of AAC00‐1, the aacR or aacI deletion mutants (95.2, 94.9 and 98.3% BFB incidence, respectively). In contrast, when seed inoculum was reduced to approximately 1 × 103 CFU/seed, BFB seed‐to‐seedling transmission declined to 34.3% for the aacI mutant, which was significantly less than the wild type (78.6%). Interestingly, BFB seed‐to‐seedling transmission for the aacR mutant was not significantly different to the wild‐type strain. These data suggest that QS plays a role in regulation of genes involved in seed‐to‐seedling transmission of BFB.  相似文献   

13.
The jasmonate pathway is a highly conserved defensive cascade in plants that regulates the induction of resistance against herbivores; however, its role in herbivore feeding behaviour remains unknown. We used a mutant tomato plant (def‐1) deficient in the production of jasmonate‐related defensive proteins to test the hypothesis that genotypes with a reduced ability to induce resistance have a higher and more concentrated pattern of herbivore damage. Wild‐type and def‐1 plants received either damage by Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) caterpillars or no damage. After treatment, we tested for systemic responses by allowing a free roaming S. exigua caterpillar to feed on the undamaged portions of plants. Weight‐gain and leaf consumption of S. exigua were highest on def‐1 plants, regardless of prior herbivore damage. Def‐1 plants also had fewer numbers of leaves and leaflets eaten, and fewer feeding holes, which was indicative of a more concentrated distribution of damage on mutant compared to wild‐type plants. Following these results, we mimicked the amount and distribution of feeding damage that wild‐type or jasmonate‐deficient plants would receive on wild‐type plants to test whether changes in feeding behaviour may feedback to influence the expression of induced resistance. We mimicked the distribution of damage in wild‐type and jasmonate‐deficient plants by allowing caterpillars to feed on either one (leaf 1 or 2) or two leaves (leaf 1 and 2). Increased herbivore damage resulted in higher proteinase inhibitor (PI) activity, a jasmonate‐regulated defensive protein, and lower S. exigua performance on wild‐type but not jasmonate‐deficient plants. Compared to undamaged plants, a concentrated pattern of herbivore damage increased systemic resistance; these induced responses were greater on leaflets with stronger vascular connections to the damaged leaf. A more dispersed pattern of caterpillar damage altered the expression of induced responses, but the outcome depended on the specific pattern of damage. When leaf 1 was damaged and then leaf 2, the undamaged (third) leaf (which is more strongly connected to leaf 1 than 2) expressed reduced the PI activity compared to plants receiving concentrated damage to leaf 1; whereas in plants where leaf 2 was first damaged and then leaf 1, there were no differences in PI activity in leaf 3 compared to plants receiving concentrated damage to leaf 2. Thus, induction of the jasmonate pathway may not only determine the amount and distribution of feeding damage by herbivores, but this may feedback to affect the subsequent expression of plant defence.  相似文献   

14.
Boron (B) is an essential microelement for vascular plant development, but its toxicity is a major problem affecting crop yields in arid and semi‐arid areas of the world. In the literature, several genes involved in abscisic acid (ABA) signalling and responses are upregulated in Arabidopsis roots after treatment with excess B. It is known that the AtNCED3 gene, which encodes a crucial enzyme for ABA biosynthesis, plays a key role in the plant response to drought stress. In this study, root AtNCED3 expression and shoot ABA content were rapidly increased in wild‐type plants upon B‐toxicity treatment. The Arabidopsis ABA‐deficient nced3‐2 mutant had higher transpiration rate, stomatal conductance and accumulated more B in their shoots than wild‐type plants, facts that were associated with the lower levels of ABA in this mutant. However, in wild‐type plants, B toxicity caused a significant reduction in stomatal conductance, resulting in a decreased transpiration rate. This response could be a mechanism to limit the transport of excess B from the roots to the leaves under B toxicity. In agreement with the higher transpiration rate of the nced3‐2 mutant, this genotype showed an increased leaf B concentration and damage upon exposure to 5 mM B. Under B toxicity, ABA application decreased B accumulation in wild‐type and nced3‐2 plants. In summary, this work shows that excess B applied to the roots leads to rapid changes in AtNCED3 expression and gas exchange parameters that would contribute to restrain the B entry into the leaves, this effect being mediated by ABA.  相似文献   

15.
Ceramidases hydrolyze ceramide into sphingosine and fatty acids. In mammals, ceramidases function as key regulators of sphingolipid homeostasis, but little is known about their roles in plants. Here we characterize the Arabidopsis ceramidase AtACER, a homolog of human alkaline ceramidases. The acer‐1 TDNA insertion mutant has pleiotropic phenotypes, including reduction of leaf size, dwarfing and an irregular wax layer, compared with wild‐type plants. Quantitative sphingolipid profiling showed that acer‐1 mutants and the artificial microRNA‐mediated silenced line amiR‐ACER‐1 have high ceramide levels and decreased long chain bases. AtACER localizes predominantly to the endoplasmic reticulum, and partially to the Golgi complex. Furthermore, we found that acer‐1 mutants and AtACER RNAi lines showed increased sensitivity to salt stress, and lines overexpressing AtACER showed increased tolerance to salt stress. Reduction of AtACER also increased plant susceptibility to Pseudomonas syringae. Our data highlight the key biological functions of ceramidases in biotic and abiotic stresses in plants.  相似文献   

16.
In tobacco, the heavy metal P1B‐ATPases HMA4.1 and HMA4.2 function in root‐to‐shoot zinc and cadmium transport. We present greenhouse and field data that dissect the possibilities to impact the two homeologous genes in order to define the best strategy for leaf cadmium reduction. In a first step, both genes were silenced using an RNAi approach leading to >90% reduction of leaf cadmium content. To modulate HMA4 function more precisely, mutant HMA4.1 and HMA4.2 alleles of a Targeting Induced Local Lesions IN Genomes (TILLING) population were combined. As observed with RNAi plants, knockout of both homeologs decreased cadmium root‐to‐shoot transfer by >90%. Analysis of plants with segregating null and wild‐type alleles of both homeologs showed that one functional HMA4 allele is sufficient to maintain wild‐type cadmium levels. Plant development was affected in HMA4 RNAi and double knockout plants that included retarded growth, necrotic lesions, altered leaf morphology and increased water content. The combination of complete functional loss (nonsense mutation) in one homeologous HMA4 gene and the functional reduction in the other HMA4 gene (missense mutation) is proposed as strategy to limit cadmium leaf accumulation without developmental effects.  相似文献   

17.
Seed development largely depends on the long‐distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source‐to‐sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function of SUT sucrose transporters. In this study, we used vegetable peas (Pisum sativum L.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenous SUT1 transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this ‘Push‐and‐Pull’ approach, the transgenic SUT1 plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source‐to‐sink transport of amino acids. Embryo loading with amino acids was also increased in SUT1‐overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild‐type plants. Together, the results demonstrate that the SUT1‐overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Pushand‐Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.  相似文献   

18.
Plant seed oil‐based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum‐derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproduct applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co‐expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol‐3‐phosphate dehydrogenase (GPD1) genes under the control of seed‐specific promoters. Plants co‐expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild‐type plants. Further, DGAT1‐ and GDP1‐co‐expressing lines showed significantly higher seed and oil yields on a dry weight basis than the wild‐type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1‐ and GPD1‐co‐expressing lines was almost twofold higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield.  相似文献   

19.
Methyl jasmonate (MeJA) and abscisic acid (ABA) signalling cascades share several signalling components in guard cells. We previously showed that two guard cell‐preferential mitogen‐activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate ABA signalling in Arabidopsis thaliana. In this study, we examined whether these two MAP kinases function in MeJA signalling using genetic mutants for MPK9 and MPK12 combined with a pharmacological approach. MeJA induced stomatal closure in mpk9‐1 and mpk12‐1 single mutants as well as wild‐type plants, but not in mpk9‐1 mpk12‐1 double mutants. Consistently, the MAPKK inhibitor PD98059 inhibited the MeJA‐induced stomatal closure in wild‐type plants. MeJA elicited reactive oxygen species (ROS) production and cytosolic alkalisation in guard cells of the mpk9‐1, mpk12‐1 and mpk9‐1 mpk12‐1 mutants, as well in wild‐type plants. Furthermore, MeJA triggered elevation of cytosolic Ca2+ concentration ([Ca2+]cyt) in the mpk9‐1 mpk12‐1 double mutant as well as wild‐type plants. Activation of S‐type anion channels by MeJA was impaired in mpk9‐1 mpk12‐1. Together, these results indicate that MPK9 and MPK12 function upstream of S‐type anion channel activation and downstream of ROS production, cytosolic alkalisation and [Ca2+]cyt elevation in guard cell MeJA signalling, suggesting that MPK9 and MPK12 are key regulators mediating both ABA and MeJA signalling in guard cells.  相似文献   

20.
The starch‐statolith hypothesis proposes that starch‐filled amyloplasts act as statoliths in plant gravisensing, moving in response to the gravity vector and signaling its direction. However, recent studies suggest that amyloplasts show continuous, complex movements in Arabidopsis shoots, contradicting the idea of a so‐called ‘static’ or ‘settled’ statolith. Here, we show that amyloplast movement underlies shoot gravisensing by using a custom‐designed centrifuge microscope in combination with analysis of gravitropic mutants. The centrifuge microscope revealed that sedimentary movements of amyloplasts under hypergravity conditions are linearly correlated with gravitropic curvature in wild‐type stems. We next analyzed the hypergravity response in the shoot gravitropism 2 (sgr2) mutant, which exhibits neither a shoot gravitropic response nor amyloplast sedimentation at 1  g . sgr2 mutants were able to sense and respond to gravity under 30  g conditions, during which the amyloplasts sedimented. These findings are consistent with amyloplast redistribution resulting from gravity‐driven movements triggering shoot gravisensing. To further support this idea, we examined two additional gravitropic mutants, phosphoglucomutase (pgm) and sgr9, which show abnormal amyloplast distribution and reduced gravitropism at 1  g . We found that the correlation between hypergravity‐induced amyloplast sedimentation and gravitropic curvature of these mutants was identical to that of wild‐type plants. These observations suggest that Arabidopsis shoots have a gravisensing mechanism that linearly converts the number of amyloplasts that settle to the ‘bottom’ of the cell into gravitropic signals. Further, the restoration of the gravitropic response by hypergravity in the gravitropic mutants that we tested indicates that these lines probably have a functional gravisensing mechanism that is not triggered at 1  g .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号