首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The long‐term effect of elevated atmospheric CO2 on isoprenoid emissions from adult trees of two Mediterranean oak species (the monoterpene‐emitting Quercus ilex L. and the isoprene‐emitting Quercus pubescens Willd.) native to a high‐CO2 environment was investigated. During two consecutive years, isoprenoid emission was monitored both at branch level, measuring the actual emissions under natural conditions, and at leaf level, measuring the basal emissions under the standard conditions of 30 °C and at light intensity of 1000 µmol m?2 s?1. Long‐term exposure to high atmospheric levels of CO2 did not significantly affect the actual isoprenoid emissions. However, when leaves of plants grown in the control site were exposed for a short period to an elevated CO2 level by rapidly switching the CO2 concentration in the gas‐exchange cuvette, both isoprene and monoterpene basal emissions were clearly inhibited. These results generally confirm the inhibitory effect of elevated CO2 on isoprenoid emission. The absence of a CO2 effect on actual emissions might indicate higher leaf temperature at elevated CO2, or an interaction with multiple stresses some of which (e.g. recurrent droughts) may compensate for the CO2 effect in Mediterranean ecosystems. Under elevated CO2, isoprene emission by Q. pubescens was also uncoupled from the previous day's air temperature. In addition, pronounced daily and seasonal variations of basal emission were observed under elevated CO2 underlining that correction factors may be necessary to improve the realistic estimation of isoprene emissions with empirical algorithms in the future. A positive linear correlation of isoprenoid emission with the photosynthetic electron transport and in particular with its calculated fraction used for isoprenoid synthesis was found. The slope of this relationship was different for isoprene and monoterpenes, but did not change when plants were grown in either ambient or elevated CO2. This suggests that physiological algorithms may usefully predict isoprenoid emission also under rising CO2 levels.  相似文献   

2.
There is a growing interest in understanding and forecasting the responses of plant communities to projected changes of environmental conditions. Multi-stage demographic approaches, where plant recruitment is explored across multiple and consecutive stages, are essential to obtain a whole overview of the consequences of increasing aridity on tree recruitment and forest dynamics, but they are still rarely used. In this study, we present the results of an experimental rainfall exclusion aimed to evaluate the impact of projected increasing drought on multiple stage-specific probabilities of recruitment in a key tree species typical of late-successional Mediterranean woodlands (Quercus ilex L.). We calibrated linear and nonlinear likelihood models for the different demographic processes and calculated overall probabilities of recruitment along a wide range of microhabitat conditions. Rainfall exclusion altered Q. ilex recruitment throughout ontogeny. Seed maturation, seedling emergence and survival and, to a lesser extent, post-dispersal seed survival were the most sensitive demographic processes to decreased rainfall. Interestingly, both the identity of the most critical stages for recruitment and their specific sensitivity to rainfall manipulation depended largely on the yearly pattern of precipitation. The microhabitat heterogeneity strongly determined the success of recruitment in the study species. The experimental increase in drought displaced the peak of maximum overall recruitment towards the low end of the light gradient, suggesting that the dependence on shrubs for an effective recruitment in Q. ilex could be intensified under future environmental scenarios. In terms of phenotypic plasticity, Q. ilex seedlings responded more strongly to light availability than to experimentally increased drought, which could reduce its ability to persist under on-going environmental conditions due to climate change. Results from this study provide a full picture of the ecological and functional consequences of the projected rainfall reduction on tree recruitment and forest dynamics in two years of contrasting precipitation.  相似文献   

3.
Vulnerability to drought‐induced cavitation is a key trait of plant water relations. Here, we summarize the available literature on vulnerability to drought‐induced cavitation in poplars (Populus spp.), a genus of agronomic, ecological and scientific importance. Vulnerability curves and vulnerability parameters (including the water potential inducing 50% loss in hydraulic conductivity, P50) were collected from 37 studies published between 1991 and 2014, covering a range of 10 species and 12 interspecific hybrid crosses. Results of our meta‐analysis confirm that poplars are among the most vulnerable woody species to drought‐induced cavitation (mean P50 = ?1.44 and ?1.55 MPa across pure species and hybrids, respectively). Yet, significant variation occurs among species (P50 range: 1.43 MPa) and among hybrid crosses (P50 range: 1.12 MPa), within species and hybrid crosses (max. P50 range reported: 0.8 MPa) as well as in response to environmental factors including nitrogen fertilization, irradiance, temperature and drought (max. P50 range reported: 0.75 MPa). Potential implications and gaps in knowledge are discussed in the context of poplar cultivation, species adaptation and climate modifications. We suggest that poplars represent a valuable model for studies on drought‐induced cavitation, especially to elucidate the genetic and molecular basis of cavitation resistance in Angiosperms.  相似文献   

4.
Leaks and isotopic disequilibria represent potential errors and artefacts during combined measurements of gas exchange and carbon isotope discrimination (Δ). This paper presents new protocols to quantify, minimize, and correct such phenomena. We performed experiments with gradients of CO2 concentration (up to ±250 μmol mol?1) and δ13CCO2 (34‰), between a clamp‐on leaf cuvette (LI‐6400) and surrounding air, to assess (1) leak coefficients for CO2, 12CO2, and 13CO2 with the empty cuvette and with intact leaves of Holcus lanatus (C3) or Sorghum bicolor (C4) in the cuvette; and (2) isotopic disequilibria between net photosynthesis and dark respiration in light. Leak coefficients were virtually identical for 12CO2 and 13CO2, but ~8 times higher with leaves in the cuvette. Leaks generated errors on Δ up to 6‰ for H. lanatus and 2‰ for S. bicolor in full light; isotopic disequilibria produced similar variation of Δ. Leak errors in Δ in darkness were much larger due to small biological : leak flux ratios. Leak artefacts were fully corrected with leak coefficients determined on the same leaves as Δ measurements. Analysis of isotopic disequilibria enabled partitioning of net photosynthesis and dark respiration, and indicated inhibitions of dark respiration in full light (H. lanatus: 14%, S. bicolor: 58%).  相似文献   

5.
Plants may exhibit some degree of acclimation after experiencing drought, but physiological adjustments to consecutive cycles of drought and re-watering (recovery) have scarcely been studied. The Mediterranean evergreen holm oak (Q. ilex) and the semi-deciduous rockrose (C. albidus) showed some degree of acclimation after the first of three drought cycles (S1, S2, and S3). For instance, during S2 and S3 both species retained higher relative leaf water contents than during S1, despite reaching similar leaf water potentials. However, both species showed remarkable differences in their photosynthetic acclimation to repeated drought cycles. Both species decreased photosynthesis to a similar extent during the three cycles (20-40% of control values). However, after S1 and S2, photosynthesis recovered only to 80% of control values in holm oak, due to persistently low stomatal (g(s)) and mesophyll (g(m)) conductances to CO(2). Moreover, leaf intrinsic water use efficiency (WUE) was kept almost constant in this species during the entire experiment. By contrast, photosynthesis of rockrose recovered almost completely after each drought cycle (90-100% of control values), while the WUE was largely and permanently increased (by 50-150%, depending on the day) after S1. This was due to a regulation which consisted in keeping g(s) low (recovering to 50-60% of control values after re-watering) while maintaining a high g(m) (even exceeding control values during re-watering). While the mechanisms to achieve such particular regulation of water and CO(2) diffusion in leaves are unknown, it clearly represents a unique acclimation feature of this species after a drought cycle, which allows it a much better performance during successive drought events. Thus, differences in the photosynthetic acclimation to repeated drought cycles can have important consequences on the relative fitness of different Mediterranean species or growth forms within the frame of climate change scenarios.  相似文献   

6.
Question: Which is the response of the evergreen Quercus ilex and the deciduous Q. cerrioides to repeated disturbances? Location: central Catalonia (northeastern Spain), in the areas affected by two of the largest historically recorded wildfires in NE Spain: the Bages‐Berguedà fire (24 300 ha forested area burned in July 1994), and the Solsonès fire (14 300 ha burned in 1998). Methods: Survival and growth of individuals of Quercus ilex and Q. cerrioides were evaluated in plants subjected to different fire histories and experimental disturbances (burning, cutting or clipping) applied either before or after summer. Results: Survival was high (> 99%), with both species showing a similar high resistance to disturbances. Growth after experimental disturbance was positively related to the size of the individual before the latest forest fire occurred. Fire history had a large effect on resprout growth, as the repeated incidence of disturbances lowered the capacity of individuals to grow. The type and season of experimental disturbance experienced by plants had a large effect. Individuals that experienced total above‐ground loss had lower growth rates than those with partial loss. A similar pattern was observed in individuals disturbed after the summer in relation to those disturbed before summer. Conclusions: The larger growth rates recorded in Q. cerrioides across all fire histories and experimental treatments, and the higher vulnerability of Q. ilex to increased fire frequency, intensity of experimental disturbance, and disturbance season, provide evidence for the relatively high susceptibility of the latter to repeated disturbances. This view disagrees with the larger resilience of this species compared to co‐existing deciduous oaks, as reported.  相似文献   

7.
The rise in atmospheric CO2 concentrations (Ca) has been related to tree growth enhancement and increasing intrinsic water‐use efficiency (iWUE). However, the extent that rising Ca has led to increased long‐term iWUE and whether climate could explain deviations from expected Ca‐induced growth enhancement are still poorly understood. The aim of this research was to use Ca and local climatic variability to explain changes during the 20th century in growth and tree ring and needle δ13C in declining and nondeclining Abies alba stands from the Spanish Pyrenees, near the southern distribution limit of this species. The temporal trends of iWUE were calculated under three theoretical scenarios for the regulation of plant‐gas exchange at increasing Ca. We tested different linear mixed‐effects models by multimodel selection criteria to predict basal area increment (BAI), a proxy of tree radial growth, using these scenarios and local temperature together with precipitation data as predictors. The theoretical scenario assuming the strongest response to Ca explained 66–81% of the iWUE variance and 28–56% of the observed BAI variance, whereas local climatic variables together explained less than 11–21% of the BAI variance. Our results are consistent with a drought‐induced limitation of the tree growth response to rising CO2 and a decreasing rate of iWUE improvement from the 1980s onward in declining A. alba stands subjected to lower water availability.  相似文献   

8.
The variations of leaf carbohydrate concentration, carbon isotopediscrimination () of leaf soluble carbohydrate, gas-exchangeand growth during a soil drying cycle under 350 and 700 µmolmol-1 CO2 concentrations ([CO2]) inQuercus robur seedlings wereanalysed. In well-watered conditions, a doubling of [CO2] causedan increase of CO2 assimilation rate (A) ( +47%) and a decreaseof stomatal conductance for water vapour (g) (–25%),anddoubled the intrinsic water-use efficiency (A/g). The valuesof A were not affected by elevated [CO2] which was consistentwith the 2-fold increase of A/g. Elevated [CO2 also significantlyincreased sucrose and starch leaf concentrations as well asaerial growth and plant dry weight. The stimulating effect ofCO2 enrichment on A and A/g was maintained in moderate droughtconditions, but disappeared in the most severe drought conditions.Drought induced an increase of hexose concentrations in both[CO2], but this effect was more pronounced under elevated [CO2],which may contribute to increase osmoregulation. From the onsetof drought, starch was depleted in both [CO2]. Carbon isotopediscrimination decreased in response to drought, which correspondedto an increase in A/g according to the two-step model of isotopicdiscrimination. In contrast, the A/g values derived from instantaneousleaf gas-exchange measurements decreased along the drying cycle.The discrepancy observed between the two independent estimatesof water-use efficiency is discussed in terms of time-scaleintegration. The results obtained with the isotopic approachusing soluble carbohydrate suggest a predominant stomatal limitationof CO2 assimilation in response to drought. Soil drying cycle,elevated CO2, leaf gas-exchange, leaf carbohydrate concentrations,carbon isotope discrimination, growth, Quercus robur. Key words: soil drying cycle, elevated CO2, leaf gas-exchange, leaf carbohydrate concentrations, carbon isotope discrimination, growth, Quercus robur  相似文献   

9.
It has been reported that elevated temperature accelerates the time‐to‐mortality in plants exposed to prolonged drought, while elevated [CO2] acts as a mitigating factor because it can reduce stomatal conductance and thereby reduce water loss. We examined the interactive effects of elevated [CO2] and temperature on the inter‐dependent carbon and hydraulic characteristics associated with drought‐induced mortality in Eucalyptus radiata seedlings grown in two [CO2] (400 and 640 μL L?1) and two temperature (ambient and ambient +4 °C) treatments. Seedlings were exposed to two controlled drying and rewatering cycles, and then water was withheld until plants died. The extent of xylem cavitation was assessed as loss of stem hydraulic conductivity. Elevated temperature triggered more rapid mortality than ambient temperature through hydraulic failure, and was associated with larger water use, increased drought sensitivities of gas exchange traits and earlier occurrence of xylem cavitation. Elevated [CO2] had a negligible effect on seedling response to drought, and did not ameliorate the negative effects of elevated temperature on drought. Our findings suggest that elevated temperature and consequent higher vapour pressure deficit, but not elevated [CO2], may be the primary contributors to drought‐induced seedling mortality under future climates.  相似文献   

10.
Drought stress conditions decrease maize growth and yield, and aggravate preharvest aflatoxin contamination. While several studies have been performed on mature kernels responding to drought stress, the metabolic profiles of developing kernels are not as well characterized, particularly in germplasm with contrasting resistance to both drought and mycotoxin contamination. Here, following screening for drought tolerance, a drought‐sensitive line, B73, and a drought‐tolerant line, Lo964, were selected and stressed beginning at 14 days after pollination. Developing kernels were sampled 7 and 14 days after drought induction (DAI) from both stressed and irrigated plants. Comparative biochemical and metabolomic analyses profiled 409 differentially accumulated metabolites. Multivariate statistics and pathway analyses showed that drought stress induced an accumulation of simple sugars and polyunsaturated fatty acids and a decrease in amines, polyamines and dipeptides in B73. Conversely, sphingolipid, sterol, phenylpropanoid and dipeptide metabolites accumulated in Lo964 under drought stress. Drought stress also resulted in the greater accumulation of reactive oxygen species (ROS) and aflatoxin in kernels of B73 in comparison with Lo964 implying a correlation in their production. Overall, field drought treatments disordered a cascade of normal metabolic programming during development of maize kernels and subsequently caused oxidative stress. The glutathione and urea cycles along with the metabolism of carbohydrates and lipids for osmoprotection, membrane maintenance and antioxidant protection were central among the drought stress responses observed in developing kernels. These results also provide novel targets to enhance host drought tolerance and disease resistance through the use of biotechnologies such as transgenics and genome editing.  相似文献   

11.
Questions: The following hypotheses of neighbourhood effects on drought‐induced mortality are evaluated: (A) drought‐induced stem death is randomly distributed in space, (B) stems are predisposed to drought‐induced death through negative density‐dependent effects and (C) stems are predisposed to drought‐induced death due to local deficits in plant available resources. Location: Central Queensland, Australia. Methods: Recent mass mortality of woody stems was surveyed and mapped in three 1.21‐ha quadrats within Eucalyptus melanophloia‐dominated savanna. A multi‐faceted analytical approach was adopted including spatial pattern analyses, two logistic regressions of neighbourhood density effects on survival and spatial autocorrelation analyses of model residuals. Results: Mortality was concentrated in stems ≤15‐cm diameter at breast height (DBH). Survival was aggregated or random in quadrats 1 and 3 and random o regular in quadrat 2. Small neighbour density had a negative effect on survival in all quadrats. In addition, the second model identified a positive relationship between survival and living neighbour density in quadrat 3 (indicating a resource patch effect), but a negative relationship in quadrat 2 (density effect). Analysis of model residuals showed that neighbour density explained mortality equally well across quadrat 2, but not across quadrats 1 and 3. Conclusions: There was evidence in support of hypotheses B (neighbour density) and C (resource heterogeneity). We found strong support for an interaction between microsite quality and neighbourhood stem densities, and suggest that this interaction is driven by plant available water.  相似文献   

12.
Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas‐exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas‐exchange that include maintaining a constant leaf internal [CO2], ci, a constant drawdown in CO2 (ca ? ci), and a constant ci/ca. These strategies can result in drastically different consequences for leaf gas‐exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas‐exchange responses to varying ca. The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas‐exchange responses to ca. To assess leaf gas‐exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ13C) or photosynthetic discrimination (?) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca‐induced changes in ci/ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca ? ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci. Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca, when additional water loss is small for each unit of C gain, and increasingly water‐conservative at high ca, when photosystems are saturated and water loss is large for each unit C gain.  相似文献   

13.
The holm oak plays a relevant role in the functioning of Mediterranean forests. In the area north of Garda Lake, Italian Prealps, holm oak populations are at the northernmost edge of their distribution. Being peripheral, these populations are of particular interest for ecological, evolutionary and conservation studies. Through an explicit individual‐based landscape genetics approach, we addressed the following questions: (1) are levels of genetic variation reduced in these marginal populations compared with central populations?; (2) despite the narrow geographical scale, do individual‐based analyses have some power to detect genetic differentiation?; (3) do environmental and/or climatic factors exert a role in shaping patterns of genetic variation and differentiation? Through a Bayesian method, we identified three clusters whose genetic variability can be considered to be of the same order as that recorded in central Quercus ilex populations. Although being geographically very close (< 20 km), the differentiation was statistically significant (P < 0.05) with global F st and Φ Pt values of 0.019 and 0.038, respectively. Geography and phylogeography could not be invoked to explain this differentiation. A redundancy discriminant analysis revealed that relevant eco‐pedological and climatic features, such as soil depth, aspect, elevation and humidity, were correlated with the observed pattern of differentiation. Toblino was ecologically separated from the other clusters, as it lies on deep soil with subhumid conditions. The differentiation of the Brione–Ranzo–Val Busa cluster appeared to be related to superficial soils and drier conditions, whereas the Nanzone–Padaro cluster was differentiated mainly according to its mid‐elevation. Coupling spatial and genetic information on a local scale proved to be effective to investigate the evolutionary and demographic history of peripheral populations. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

14.
The principles and limitations of leaf gas exchange measurementsin portable gas exchange systems are described. Attention isgiven to the design and developments in infrared gas analysersused in portable systems, and the basic structure of singleand dual beam instruments is presented. The significance offlow measurement in these systems and the principles of thermalmass flow measurement are illustrated. Considerations of leafarea measurement, chamber design and choice of materials areoutlined. Two specific developments in field gas exchange systemsare described and their significance in field measurements isillustrated with examples. (1) An integrating sphere leaf chamberfor the determination of the quantum yield of photosynthesis,on the basis of absorbed light, is explained and equations forits use are developed. The significance of this approach isillustrated by a comparison of data for contrasting leaves plottedon an absorbed and incident light basis. This measurement oflight-limited photosynthesis is also critical in understandingthe contribution of shaded leaves to canopy photosynthesis.(2) A system for the measurement of canopy photosynthesis fromarable crops and low stature natural vegetation is described.Results from a season-long study of wheat CO2 exchange are shownto illustrate its application. Key words: Leaf gas exchange, photosynthetic quantum efficiency, infrared gas analysis, canopy photosynthesis, integrating sphere  相似文献   

15.
Widespread drought‐induced forest mortality has been documented across multiple tree species in North America in recent decades, but it is a poorly understood component in terrestrial carbon (C) budgets. Recent severe drought in concert with elevated temperature likely triggered widespread forest mortality of trembling aspen (Populus tremuloides), the most widely distributed tree species in North America. The impact on the regional C budgets and spatial pattern of this drought‐induced tree mortality, which has been termed ‘sudden aspen decline (SAD)’, is not well known and could contribute to increased regional C emissions, an amplifying feedback to climate change. We conducted a regional assessment of drought‐induced live aboveground biomass (AGB) loss from SAD across 915 km2 of southwestern Colorado, USA, and investigated the influence of topography on the severity of mortality by combining field measures, remotely sensed nonphotosynthetically active vegetation and a digital elevation model. Mean [± standard deviation (SD)] remote sensing estimate of live AGB loss was 60.3 ± 37.3 Mg ha?1, which was 30.7% of field measured AGB, totaling 2.7 Tg of potential C emissions from this dieback event. Aspen forest health could be generally categorized as healthy (0–30% field measured canopy dieback), intermediate (31–50%), and SAD (51–100%), with the remote sensing estimated mean (± SD) live AGB losses of 26.4 ± 15.1, 64.5 ± 9.2, and 108.5 ± 24.0 Mg ha?1, respectively. There was a pronounced clustering pattern of SAD on south‐facing slopes due to relatively drier and warmer conditions, but no apparent spatial gradient was found for elevation and slope. This study demonstrates the feasibility of utilizing remote sensing to assess the ramification of climate‐induced forest mortality on ecosystems and suggests promising opportunities for systematic large‐scale C dynamics monitoring of tree dieback, which would improve estimates of C budgets of North America with climate change.  相似文献   

16.
Elevated CO2 (eCO2) generally promotes increased grain yield (GY) and decreased grain protein concentration (GPC), but the extent to which these effects depend on the magnitude of fertilization remains unclear. We collected data on the eCO2 responses of GY, GPC and grain protein yield and their relationships with nitrogen (N) application rates across experimental data covering 11 field grown wheat (Triticum aestivum) cultivars studied in eight countries on four continents. The eCO2‐induced stimulation of GY increased with N application rates up to ~200 kg/ha. At higher N application, stimulation of GY by eCO2 stagnated or even declined. This was valid both when the yield stimulation was expressed as the total effect and using per ppm CO2 scaling. GPC was decreased by on average 7% under eCO2 and the magnitude of this effect did not depend on N application rate. The net effect of responses on GY and protein concentration was that eCO2 typically increased and decreased grain protein yield at N application rates below and above ~100 kg/ha respectively. We conclude that a negative effect on wheat GPC seems inevitable under eCO2 and that substantial N application rates may be required to sustain wheat protein yields in a world with rising CO2.  相似文献   

17.
The rising concentration of atmospheric carbon dioxide (CO2) is known to increase the total aboveground biomass of several C3 crops, whereas C4 crops are reported to be hardly affected when water supply is sufficient. However, a free‐air carbon enrichment (FACE) experiment in Braunschweig, Germany, in 2007 and 2008 resulted in a 25% increased biomass of the C4 crop maize under restricted water conditions and elevated CO2 (550 ppm). To project future yields of maize under climate change, an accurate representation of the effects of eCO2 and drought on biomass and soil water conditions is essential. Current crop growth models reveal limitations in simulations of maize biomass under eCO2 and limited water supply. We use the coupled process‐based hydrological‐plant growth model Catchment Modeling Framework‐Plant growth Modeling Framework to overcome this limitation. We apply the coupled model to the maize‐based FACE experiment in Braunschweig that provides robust data for the investigation of combined CO2 and drought effects. We approve hypothesis I that CO2 enrichment has a small direct‐fertilizing effect with regard to the total aboveground biomass of maize and hypothesis II that CO2 enrichment decreases water stress and leads to higher yields of maize under restricted water conditions. Hypothesis III could partly be approved showing that CO2 enrichment decreases the transpiration of maize, but does not raise soil moisture, while increasing evaporation. We emphasize the importance of plant‐specific CO2 response factors derived by use of comprehensive FACE data. By now, only one FACE experiment on maize is accomplished applying different water levels. For the rigorous testing of plant growth models and their applicability in climate change studies, we call for datasets that go beyond single criteria (only yield response) and single effects (only elevated CO2).  相似文献   

18.
A combined stomatal–photosynthesis model was extended to simulate the effects of ozone exposure on leaf photosynthesis and leaf duration in relation to CO2. We assume that ozone has a short‐term and a long‐term effect on the Rubisco‐limited rate of photosynthesis, Ac. Elevated CO2 counteracts ozone damage via stomatal closure. Ozone is detoxified at uptake rates below a threshold value above which Ac decreases linearly with the rate of ozone uptake. Reduction in Ac is transient and depends on leaf age. Leaf duration decreases depending on accumulated ozone uptake. This approach is introduced into the mechanistic crop simulation model AFRCWHEAT2. The derived model, AFRCWHEAT2‐O3, is used to test the capability of these assumptions to explain responses at the plant and crop level. Simulations of short‐term and long‐term responses of leaf photosynthesis, leaf duration and plant and crop growth to ozone exposure in response to CO2 are analysed and compared with experimental data derived from the literature. The model successfully reproduced published responses of leaf photosynthesis, leaf duration, radiation use efficiency and final biomass of wheat to elevated ozone and CO2. However, simulations were unsatisfactory for cumulative radiation interception which had some impact on the accuracy of predictions of final biomass. There were responses of leaf‐area index to CO2 and ozone as a result of effects on tillering which were not accounted for in the present model. We suggest that some model assumptions need to be tested, or analysed further to improve the mechanistic understanding of the combined effects of changes in ozone and CO2 concentrations on leaf photosynthesis and senescence. We conclude that research is particularly needed to improve the understanding of leaf‐area dynamics in response to ozone exposure and elevated CO2.  相似文献   

19.
Increases in drought and temperature stress in forest and woodland ecosystems are thought to be responsible for the rise in episodic mortality events observed globally. However, key climatic drivers common to mortality events and the impacts of future extreme droughts on tree survival have not been evaluated. Here, we characterize climatic drivers associated with documented tree die‐off events across Australia using standardized climatic indices to represent the key dimensions of drought stress for a range of vegetation types. We identify a common probabilistic threshold associated with an increased risk of die‐off across all the sites that we examined. We show that observed die‐off events occur when water deficits and maximum temperatures are high and exist outside 98% of the observed range in drought intensity; this threshold was evident at all sites regardless of vegetation type and climate. The observed die‐off events also coincided with at least one heat wave (three consecutive days above the 90th percentile for maximum temperature), emphasizing a pivotal role of heat stress in amplifying tree die‐off and mortality processes. The joint drought intensity and maximum temperature distributions were modeled for each site to describe the co‐occurrence of both hot and dry conditions and evaluate future shifts in climatic thresholds associated with the die‐off events. Under a relatively dry and moderate warming scenario, the frequency of droughts capable of inducing significant tree die‐off across Australia could increase from 1 in 24 years to 1 in 15 years by 2050, accompanied by a doubling in the occurrence of associated heat waves. By defining commonalities in drought conditions capable of inducing tree die‐off, we show a strong interactive effect of water and high temperature stress and provide a consistent approach for assessing changes in the exposure of ecosystems to extreme drought events.  相似文献   

20.
Two Italian CO2 springs allowed us to study the long-term effect of a 350–2600 μ mol mol–1 increase in CO2 concentrations on the surface structures of leaves of Quercus ilex L. Carbon dioxide increased the quantity of cuticular waxes, above an apparent threshold of 750 μ mol mol–1 CO2. Leaf wettability was not modified by CO2 concentrations. Reduction in stomatal frequency was observable up to 750 μ mol mol–1 CO2, the slope being almost the same as that estimated for the increase in CO2 concentration from pre-industrial times to the present. At higher concentrations, CO2 seemed to exert no more impact on stomatal frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号