首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of potato tuber protein accumulation by gibberellic Acid   总被引:2,自引:0,他引:2  
Many studies have shown that gibberellic acid (GA3) inhibits tuberization in potato (Solanum tuberosum L.). In this study, we have utilized the 40 kilodalton glycoprotein, patatin, as a marker for biochemical events associated with the process of tuberization. To determine the effects of exogenous applications of GA3 on the induction of the accumulation of this major tuber protein, we measured patatin levels in tubers from treated whole plants, petioles from a single-node cutting system with GA3 applied in a lanolin paste, and stolon tips cultured in vitro on an inductive medium supplemented with GA3. In all three systems, GA3 inhibited the accumulation of patatin and the major 15 and 22 kilodalton tuber proteins. This effect appeared to be selective since most of the other proteins were not affected and, in tubers, at least one protein was stimulated by GA3. These results suggest that GA3 can reverse biochemical events of tuberization in tubers as well as prevent the accumulation of the major tuber proteins in other inducible tissues.  相似文献   

2.
Stems of potato plants (Solanum tuberosum L. cv. Dianella) were immersed in solutions containing water (control), sucrose, glucose, paclobutrazol, and gibberellic acid. The effects of these treatments on the ethylene release, levels of endogenous gibberellins, glucose, sucrose, and starch were correlated with tuberization of nodal cuttings, excised from potato stems. Paclobutrazol and sucrose improved the percent of tuberization and/or increased tuber weight. In contrast, GA3 inhibited tuber formation compared with the control. The level of endogenous free GAs was negatively correlated with percent tuberization. However, the level of conjugated GAs was positively correlated with both percent tuberization and tuber weight. The effect of sucrose on potato tuber induction in relation to the possible role of sucrose in GA-conjugate formation is discussed.  相似文献   

3.
GA biosynthesis and catabolism has been shown to play an important role in regulating tuberization in potato. Active GAs are inactivated in the stolon tips shortly after induction to tuberization. Overexpression of a GA inactivation gene results in an earlier tuberization phenotype, while reducing expression of the same gene results in delayed tuberization. In addition, overexpression of genes involved in GA biosynthesis results in delayed tuberization, while decreased expression of those genes results in earlied tuberization. The final step in GA biosynthesis is catalysed by StGA3ox1 and StGA3ox2 activity, that convert inactive forms of GA into active GA1 and GA4. In this study we cloned StGA3ox2 gene in an RNAi construct and used this construct to transform potato plants. The StGA3ox2 silenced plants were smaller and had shorter internodes. In addition, we assayed the concentrations of various GAs in the transgenic plants and showed an altered GA content. No difference was observed on the time point of tuber initiation. However, the transgenic clones had increased number of tubers with the same yield, resulting in smaller average tuber weight. In addition, we cloned the promoter of StGA3ox2 to direct expression of the GUS reporter gene to visualize the sites of GA biosynthesis in the potato plant. Finally, we discuss how changes of several GA levels can have an impact on shoot, stolon and tuber development, as well as the possible mechanisms that mediate feed-forward and feed-back regulation loops in the GA biosynthetic pathway in potato.  相似文献   

4.
The effects of plant hormones and sucrose (Suc) on potato (Solanum tuberosum L.) tuberization were studied using in vitro cultured single-node cuttings. Tuber-inducing (high Suc) and -noninducing (low Suc or high Suc plus gibberellin [GA]) media were tested. Tuberization frequencies, tuber widths, and stolon lengths were measured during successive stages of development. Endogenous GAs and abscisic acid (ABA) were identified and quantified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Exogenous GA4/7 promoted stolon elongation and inhibited tuber formation, whereas exogenous ABA stimulated tuberization and reduced stolon length. Indoleacetic acid-containing media severely inhibited elongation of stolons and smaller sessile tubers were formed. Exogenous cytokinins did not affect stolon elongation and tuber formation. Endogenous GA1 level was high during stolon elongation and decreased when stolon tips started to swell under inducing conditions, whereas it remained high under noninducing conditions. GA1 levels were negatively correlated with Suc concentration in the medium. We conclude that GA1 is likely to be the active GA during tuber formation. Endogenous ABA levels decreased during stolon and tuber development, and ABA levels were similar under inducing and noninducing conditions. Our results indicate that GA is a dominant regulator in tuber formation: ABA stimulates tuberization by counteracting GA, and Suc regulates tuber formation by influencing GA levels.  相似文献   

5.
6.
Gibberellins (GAs) regulate growth and development in higher plants. To identify GA-regulated proteins during rice leaf sheath elongation, a proteomic approach was used. Proteins from the basal region of leaf sheath in rice seedling treated with GA3 were analyzed by fluorescence two-dimensional difference gel electrophoresis. The levels of abscisic acid-stress-ripening-inducible 5 protein (ASR5), elongation factor-1 beta, translationally controlled tumor protein, fructose-bisphosphate aldolase and a novel protein increased; whereas the level of RuBisCO subunit binding-protein decreased by GA3 treatment. ASR5 out of these six proteins was significantly regulated by GA3 at the protein level but not at the mRNA level in the basal region of leaf sheaths. Since this protein is regulated not only by abscisic acid but also by GA3, these results indicate that ASR5 might be involved in plant growth in addition to stress in the basal regions of leaf sheaths.  相似文献   

7.
GAl5, GA3, GA5, GA19, GA20 and GA23 were identified by GC-MS in the acidic ethyl acetate-soluble fraction from the seeds of sweet potato (Ipomoea batatas Lam.). GA19 and GA23 were major GAs in the mature seeds, their contents being about 200 and 160 μg/kg fresh weight, respectively, while those of GA19 and GA23 in immature seeds were below 100 μg/kg fr. wt. The occurrence of glycosyl conjugates of GA3, GA5, GA8, GA17, GA19, GA20, GA23 and GA44 in the butanol fraction from mature seeds was shown by GC/MS analysis after enzymatic hydrolysis.

Besides the endogenous GAs in sweet potato, those in immature seeds of several other Convolvulaceae plants were investigated. The species of endogenous GAs were discussed in terms of chemotaxonomy.  相似文献   

8.
Tuberization in potato (Solanum tuberosum L.) is a complex biological phenomenon which is affected by several environmental cues, genetic factors and plant nutrition. Understanding the regulation of tuber induction is essential to devise strategies to improve tuber yield and quality. It is well established that short-day photoperiods promote tuberization, whereas long days and high-temperatures inhibit or delay tuberization. Worldwide research on this complex biological process has yielded information on the important bio-molecules (proteins, RNAs, plant growth regulators) associated with the tuberization process in potato. Key proteins involved in the regulation of tuberization include StSP6A, POTH1, StBEL5, StPHYB, StCONSTANS, Sucrose transporter StSUT4, StSP5G, etc. Biomolecules that become transported from “source to sink” have also been suggested to be important signaling candidates regulating the tuberization process in potatos. Four molecules, namely StSP6A protein, StBEL5 RNA, miR172 and GAs, have been found to be the main candidates acting as mobile signals for tuberization. These biomolecules can be manipulated (overexpressed/inhibited) for improving the tuberization in commercial varieties/cultivars of potato. In this review, information about the genes/proteins and their mechanism of action associated with the tuberization process is discussed.  相似文献   

9.
Recently, it was found that stem elongation and flowering of stock Matthiola incana (L.) R. Br. are promoted by exogenous gibberellins (GAs), including GA4, and also by acylcyclohexanedione inhibitors of GA biosynthesis, such as prohexadione‐calcium (PCa) and trinexapac‐ethyl (TNE). Here, because it was unclear how GA biosynthetic inhibitors could promote stem elongation and flowering, their effect on GA biosynthesis has been examined by quantifying endogenous GA levels; also, the sensitivity of stem elongation and flowering to various GAs in combination with the inhibitors was examined. Stem elongation and flowering were most effectively promoted by GA4 when combined with PCa and, next in order, by 2,2‐dimethyl‐GA4, PCa, GA4+TNE, TNE, GA9+PCa and by GA4. There was little or no promotion by GA1, GA3, GA9, GA13, GA20 and 3‐epi‐2,2‐dimethyl‐GA4. Both the promotive effects of the acylcyclohexanediones on stem elongation and flowering, particularly when applied with GA4, and the fact that TNE caused a build‐up of endogenous GA4 imply that one effect of TNE at the lower dose involved an inhibition of 2β‐hydroxylation of GA4 rather than an inhibition of 20‐oxidation and 3β‐hydroxylation of GAs which were precursors of GA4. Overall, these results indicate that: (1) GAs with 3β‐OH and without 13‐OH groups (e.g. GA4) are the most important for stem elongation and flowering in M. incana; (2) growth promotion rather than inhibition can result if an acylcyclohexanedione acts predominantly to slow 2β‐hydroxylation and so slows inactivation of active gibbberellins, including GA4. It follows that a low dose of an acylcyclohexanedione can be a ‘growth enhancer’ for any applied GA that is liable to inactivation by 2β‐hydroxylation.  相似文献   

10.
Gibberellins (GAs) are key regulators of plant growth and development and recent studies suggest also a role during arbuscular mycorrhizal (AM) formation. Here, complementary approaches have been used to obtain a clearer picture that correlates AM fungal development inside roots with GA metabolism. An extensive analysis of genes associated with GA metabolism as well as a quantification of GA content in roots was made. Application of GA3 and its biosynthesis inhibitor prohexadione calcium (PrCa) combined with a GA‐constitutive response mutant (procera) were used to determine whether fungal colonization is altered by the level of these hormones or by changes in the GA‐signaling pathway. The increased levels of specific GAs from the 13‐hydroxylation pathway in mycorrhizal roots correlate closely with the increased expression of genes coding enzymes from the GA biosynthetic trail. The imbalance of GAs in tomato roots caused by exogenous applications of GA3 or PrCa affects arbuscules in both negative and positive ways, respectively. In addition, procera plants were adversely affected by the mycorrhization process. Our findings demonstrate that an imbalance in favor of an increased amount of GAs negatively affects the frequency of mycorrhization and particularly the arbuscular abundance in tomato mycorrhizal roots and the results point out that AM formation is associated with a change in the 13‐hydroxylation pathway of GAs.  相似文献   

11.
Endophytic fungi are potential sources of secondary metabolites; however, they are little known for phytohormones secretion and amelioration of plant growth under abiotic stresses. We isolated a novel endophyte from the roots of Cucumis sativus and identified it as a strain of Exophiala sp. by sequencing internal transcribed spacer/large subunit rDNA and phylogenetic analysis. Prior to identification, culture filtrate (CF) of Exophiala sp. has shown significant growth promotion of Waito‐C [a gibberellins (GAs)‐deficient mutant cultivar] and Dongjin‐byeo (normal GAs biosynthesis cultivar) rice seedlings. CF analysis of Exophiala sp. showed the presence of physiologically active GAs (GA1, GA3, GA4 and GA7) and inactive GAs (GA5, GA8, GA9, GA12 and GA20). Exophiala sp. had higher GAs in its CF than wild‐type strain of Gibberella fujikuroi except GA3. Influence of Exophiala sp. was assessed on cucumber plant's growth and endogenous abscisic acid (ABA), salicylic acid (SA) and bioactive GAs under salinity and drought stresses. Exophiala sp.‐treated plants have shown significantly higher growth and rescued the host plants from stress promulgated water deficit, osmotic and cellular damage. The altered levels of stress‐responsive ABA showed low level of stress confined to endophyte‐applied plants than control. Elevated levels of SA and bioactive GAs (GA3 and GA4) in endophyte‐associated plants suggest stress‐modulating response toward salinity and drought. In conclusion, symbiotic relations between Exophiala and cucumber have reprogrammed the host plant growth under abiotic stresses, thus indicating a possible threshold role of endophytic fungi in stress alleviation. This study could be extended for improving agricultural productivity under extreme environmental conditions.  相似文献   

12.
The role of gibberellins (GAs) in determining sex in the gametophyte of the fern Blechnum spicant L. was studied through (a) the effect of exogenous GA4+7 and GA3 (b) quantitation of the endogenous levels of GA1, GA3, GA4, GA7, GA9, and GA20 in male and female gametophytes, and (c) the effect of flurprimidol, a GAs biosynthesis inhibitor of the steps of oxidation of ent-kaureno to ent-kaurenoic acid. Our results show that GA4+7 had a slight effect of inducing either male or female sexual organs, antheridia and archegonia, respectively. The endogenous GAs content was not significantly different between sexes, but the GA4, GA7, and GA20 levels were raised above those of the other GAs in both sexes. Neither antheridiogen biosynthesis nor antheridia formation was inhibited by flurprimidol. Gametophytes regenerated from homogenized mature gametophytes (HG) show a different physiological behavior than spore-derived gametophytes. In the first case, gametophytes are males and synthesize antheridiogen before they attain maturity, in contrast to what occurs in spore-derived gametophytes which are females and synthesize antheridiogen when mature.  相似文献   

13.
14.
Shoot elongation of Hancornia speciosa, an endangered tree from the Brazilian savannah “Cerrado”, is very slow, thus limiting nursery production of plants. Gibberellins (GAs) A1, A3, and A5, and two inhibitors of GA biosynthesis, trinexapac-ethyl and ancymidol were applied to shoots of Hancornia seedlings. GA1 and GA3 significantly stimulated shoot elongation, while GA5 had no significant effect. Trinexapac-ethyl and ancymidol, both at 100 μg per seedling, inhibited shoot elongation up to 45 days after treatment, though the effect was statistically significant only for ancymidol. Somewhat surprisingly, exogenous GA3 more effectively stimulated shoot elongation in SD-grown plants, than in LD-grown plants. The results from exogenous application of GAs and inhibitors of GA biosynthesis imply that Hancornia shoot growth is controlled by GAs, and that level of endogenous growth-active GAs is likely to be the limiting factor for shoot elongation in Hancornia. Application of GAs thus offer a practical method for nursery production of Hancornia seedlings for outplanting into the field.  相似文献   

15.
Major gibberellins (GAs) in lettuce (Lactuca sativa L. cv Romaine) pith explants have been identified by gas chromatography-mass spectrometry (GC-MS) or GC-selected ion monitoring (GC-SIM) as GA1, 3-epi-GA1, GA8, GA19, and GA20. Treatment of pith explants with indole-3-acetic acid (IAA) (57 micromolar) plus kinetic (0.5 micromolar) induced xylogenesis. In this xylogenic treatment, the concentration of a biologically active, polar GA-like substance(s) increased during the first 2 days of culture, although all of the above GAs decreased (as measured by GC-SIM). In non-xylogenic treatments, where explants were cultured without exogenous hormones, or with IAA or kinetin alone, the concentration of the biologically active, polar GA-like substance(s) decreased during the first two days of culture, as did all of the above GAs (as measured by GC-SIM). Treatment of pith explants with exogenous GA1 alone did not induce xylogenesis, but GA1 at very low concentrations (0.0014 and 0.003 micromolar) synergized xylogenesis in the IAA plus kinetin-treated cultures. These results suggest that changes in the concentration of certain endogenous GAs may be involved in xylogenesis mediated by IAA plus kinetin in lettuce pith cultures.  相似文献   

16.
Cuttings of potato shoots treated with the plant growth retardant 2-chloroethyltrimethyl ammonium chloride (CCC) form tubers earlier and have less biologically-active gibberellin (GA)-like substances in the roots than control cuttings. The major GA-like substance in roots of potato cuttings was identified as GA3 by gas-chromatography-mass spectrometry (GC-MS). The content of GA3 in roots of control cuttings, estimated by GC-MS-selected ion monitoring (SIM) using [17, 17-2H]GA3 as a quantitative internal standard, was 38.8 ng per g fresh weight (fw), and in roots of CCC-treated cuttings, in which tuberization was promoted, was 0.6 ng per g fw. Gibberellin A1, GA8 and GA20 were also indicated as minor components of roots from both control and CCC-treated cuttings. The comparatively high GA3 content in roots of control cuttings might be the root factor responsible for delaying tuberization in potato.Abbreviations CCC 2-chloroethyltrimethyl ammonium chloride - dw dry weight - EtOAc ethyl acetate - GA gibberellin - GC-MS-SIM gas chromatography-mass spectrometry-selected ion monitoring - HPLC high performance liquid chromatography - IAA indole-3-acetic acid - KRI Kovats' retention index - MeOH methanol - MeTMSi methyl ester trimethylsilyl ether - NAA naphthalene acetic acid - SD short day(s) - 2,4-D 2,4-dichlorophenoxy acetic acid  相似文献   

17.
Elongation of hypocotyls of sunflower can be promoted by gibberellins (GAs) and inhibited by ethylene. The role of these hormones in regulating elongation was investigated by measuring changes in both endogenous GAs and in the metabolism of exogenous [3H]- and [2H2]GA20 in the hypocotyis of sunflower (Helianthus annuus L. cv Delgren 131) seedlings exposed to ethylene. The major biologically active GAs identified by gas chromatography-mass spectrometry were GA1, GA19, GA20, and GA44. In hypocotyls of seedlings exposed to ethylene, the concentration of GA1, known to be directly active in regulating shoot elongation in a number of species, was reduced. Ethylene treatment reduced the metabolism of [3H]GA20 and less [2H2]GA1 was found in the hypocotyls of those seedlings exposed to the higher ethylene concentrations. However, it is not known if the effect of ethylene on GA20 metabolism was direct or indirect. In seedlings treated with exogenous GA1 or GA3, the hypocotyls elongated faster than those of controls, but the GA treatment only partially overcame the inhibitory effect of ethylene on elongation. We conclude that GA content is a factor which may limit elongation in hypocotyls of sunflower, and that while exposure to ethylene results in reduced concentration of GA1 this is not sufficient per se to account for the inhibition of elongation caused by ethylene.  相似文献   

18.
The potential for gibberellins (GAs) to control stem elongation and itsplasticity (range of phenotypic expression) was investigated inStellaria longipes grown in long warm days. Gibberellinmetabolism and sensitivity was compared between a slow-growing alpine dwarfwithlow stem elongation plasticity and a rapidly elongating, highly plastic prairieecotype. Both ecotypes elongated in response to exogenous GA1,GA4 or GA9, but surprisingly, the alpine dwarf wasrelatively unresponsive to GA3. Endogenous GA1,GA3, GA4, GA5, GA8, GA9and GA20 were identified and quantified in stem tissue harvested atcommencement, middle and end of the period of most rapid elongation. Theconcentration of GAs which might be expected to promote shoot elongation washigher during rapid elongation than toward its end for both ecotypes. Whilethere was a trend for certain GAs (GA3, GA4,GA9, GA20) to be higher in stems of the alpine ecotypeduring rapid elongation, that result does not explain the slower growth of thealpine ecotype and the faster growth of the prairie ecotype under a range ofconditions. To determine if the two ecotypes metabolized GA20differently, plants were fed [2H]- or[3H]-GA20. The metabolic products identified included[2H2]-GA1, -GA8, -GA29,-GA60, -3-epi-GA1, GA118(-1-epi-GA60) and -GA77. The concentration of[2H2]-GA1 also did not differ between the twoecotypes and metabolism of [2H2]- or[3H]-GA20 was also similar. In the same experiments thepresence of epi-GA1, GA29, GA60,GA118 and GA77 was indicated, suggesting that these GAsmay also occur naturally in S. longipes, in addition tothose described above. Collectively, these results suggest that while stemelongation within ecotypes is likely regulated by GAs, differences in GAcontent, sensitivity to GAs (GA3 excepted), or GA metabolism areunlikely to be the controlling factor in determining the differences seen ingrowth rate between the two ecotypes under the controlled environmentconditionsof this study. Nevertheless, further study is warranted especially underconditions where environmental factors may favour a GA:ethylene interaction.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号