首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The siliques and seeds of Arabidopsis thaliana accumulate a series of glucosinolates containing an alkyl side chain of varying length with a terminal benzoate ester function. The biosynthesis of these unusual nitrogen- and sulfur-containing natural products was investigated by feeding isotopically-labeled precursors to detached flowering stems. Glucosinolates were extracted, purified and analyzed by tandem mass spectrometry. Phenylalanine and benzoic acid were incorporated into the benzoate ester function, and methionine and acetate were incorporated into the aliphatic portion of the side chain in a position-specific manner. The labeling patterns observed were consistent with the chain extension of methionine by a three-step elongation cycle which begins with the condensation of acetyl-CoA with a 2-oxo acid derived from methionine and ends with an oxidative decarboxylation forming a new 2-oxo acid with an additional methylene group. Incorporation of desulfo-4-methylthiobutyl glucosinolate into 4-benzoyloxybutyl olucosinolate suggested chain-extended methionine derivatives are first converted to their corresponding methylthioalkyl glucosinolates with further side chain modification occurring later. Transformation of the methylthiol function to a hydroxyl group is followed by esterification with benzoic acid. The siliques appear to possess the complete machinery for carrying out all of the reactions in the biosyntheis of these complex glucosinolates.  相似文献   

2.
3.
4.
Mutants and wild type plants of Arabidopsis thaliana were analysed for differences in glucosinolate accumulation patterns, indole-3-acetic acid (IAA) biosynthesis and phenotype. A previously identified series of mutants, termed TU, with altered glucosinolate patterns was used in this study. Only the line TU8 was affected in shoot phenotype (shorter stems, altered branching pattern). Synthesis of IAA and metabolism were not much affected in the TU8 mutant during seedling development, although the content of free IAA peaked earlier in TU8 during plant development than in the wild type. Indole glucosinolates and IAA may, however, be involved in the development of clubroot disease caused by the obligate biotrophic fungus Plasmodiophora brassicae since the TU3 line had a lower infection rate than the wild type, and lines TU3 and TU8 showed decreased symptom development. The decline in clubroot formation was accompanied by a reduced number of fungal structures within the root cortex and slower development of the fungus. Indole glucosinolates were lower in infected roots of TU3 and TU8 than in control roots of these lines, whereas in wild-type plants the differences were not as prominent. Free IAA and indole-3-acetonitrile (IAN) were increased in infected roots of the wild type and mutants with normal clubroot symptoms, whereas they were reduced in infected roots of mutants TU3 and TU8. These results indicate a role for indole glucosinolates and IAN/IAA in relation to symptom development in clubroot disease. Received: 23 July 1998 / Accepted: 12 January 1999  相似文献   

5.
Brassinosteroids (BRs) are involved in numerous physiological processes associated with plant development and especially with cell expansion. Here we report that two BRs, 28-homobrassinolide (HBL) and its direct precursor 28-homocastasterone (HCS), promote cell expansion of Arabidopsis thaliana suspension cells. We also show that cell expansions induced by HBL and HCS are correlated with the amplitude of the plasma membrane hyperpolarization they elicited. HBL, which promoted the larger cell expansion, also provoked the larger hyperpolarization. We observed that membrane hyperpolarization and cell expansion were partially inhibited by the proton pump inhibitor erythrosin B, suggesting that proton pumps were not the only ion transport system modulated by the two BRs. We used a voltage clamp approach in order to find the other ion transport systems involved in the PM hyperpolarization elicited by HBL and HCS. Interestingly, while anion currents were inhibited by both HBL and HCS, outward rectifying K+ currents were increased by HBL but inhibited by HCS. The different electrophysiological behavior shown by HBL and HCS indicates that small changes in the BR skeleton might be responsible for changes in bioactivity.  相似文献   

6.
7.
8.
Plants and bacteria assimilate sulfur into cysteine. Cysteine biosynthesis involves a bienzyme complex, the cysteine synthase complex (CSC), which consists of serine-acetyl-transferase (SAT) and O-acetyl-serine-(thiol)-lyase (OAS-TL) enzymes. The activity of OAS-TL is reduced by formation of the CSC. Although this reduction is an inherent part of the self-regulation cycle of cysteine biosynthesis, there has until now been no explanation as to how OAS-TL loses activity in plants. Complexation of SAT and OAS-TL involves binding of the C-terminal tail of SAT in one of the active sites of the homodimeric OAS-TL. We here explore the flexibility of the unoccupied active site in Arabidopsis thaliana cytosolic and mitochondrial OAS-TLs. Our results reveal two gates in the OAS-TL active site that define its accessibility. The observed dynamics of the gates show allosteric closure of the unoccupied active site of OAS-TL in the CSC, which can hinder substrate binding, abolishing its turnover to cysteine.  相似文献   

9.
The growth of leaves in the model plant, Arabidopsis thaliana (L.) Heynh., is determined by the extent of expansion of individual cells and by cell proliferation. Mutants of A. thaliana with known defects in the biosynthesis or perception of brassinosteroids develop small leaves. When the leaves of brassinosteroid-related mutants, det2 (de-etiolated2 = cro1) and dwf1 (dwarf1 = cro2) were compared to wild-type plants, an earlier cessation of leaf expansion was observed; a detailed anatomical analysis further revealed that the mutants had fewer cells per leaf blade. Treatment of the det2 mutants with the brassinosteroid, brassinolide, reversed the mutation and restored the potential for growth to that of the wild type. Restoration of leaf size could not be explained solely on the basis of an increase in individual cell volume, thus suggesting that brassinosteroids play a dual role in regulating cell expansion and proliferation.  相似文献   

10.
The spectacular recent progress in Arabidopsis thaliana molecular genetics furnishes outstanding tools for studying the formation and function of all metabolites in this cruciferous species. One of the major groups of secondary metabolites in A. thaliana is the glucosinolates. These hydrophilic, sulfur-rich glycosides appear to serve as defenses against some generalist herbivores and pathogens, and as feeding and oviposition stimulants to specialist herbivores. To help study their biosynthesis and role in plant-insect interactions, we wanted to determine the complete glucosinolate content of A. thaliana. In previous studies, 24 glucosinolates had been identified from ecotype Columbia. We reinvestigated Columbia as well as additional ecotypes and mutant lines, and identified 12 further glucosinolates, including five novel compounds. Structures were elucidated by MS and NMR spectroscopy of their desulfated derivatives, and by enzymatic cleavage of the attached ester moieties. Four of the novel glucosinolates are benzoate esters isolated from the seeds. In all but one of these compounds, esterification is on the glucose moiety rather than the side chain, a very unusual feature for glucosinolates. Among additional glucosinolates identified were the first non-chain elongated, methionine-derived glucosinolate from A. thaliana and the first compounds that appear to be derived from leucine.  相似文献   

11.
Micro RNAs(mi RNAs) are vital regulators that repress gene expression in the cytoplasm in two main ways: m RNA degradation and translational inhibition. Several animal studies have shown that mi RNAs also target promoters, thereby activating expression.Whether this mi RNA action also occurs in plants is unknown. In this study, we demonstrated that several mi RNAs regulate target promoters in Arabidopsis thaliana. For example, mi R5658 was predominantly present in the nucleus and activated the expression of AT3 G25290 directly by binding to its promoter. Our observations suggest that this mode of action may be a general feature of plant mi RNAs, and thus provide insight into the vital roles of plant mi RNAs in the nucleus.  相似文献   

12.
Aliphatic glucosinolates are a major class of defensive secondary metabolites in plants that are mostly derived from methionine. Occurring in different chain lengths, they show a structural diversity arising from the variable number of chain elongation cycles taking place during their biosynthesis. The key enzymes in determining glucosinolate chain length are the methylthioalkylmalate (MAM) synthases, MAM1 and MAM3, with MAM3 showing a broader substrate specificity than MAM1. A comparison of the measurements of wild type and MAM1 knockout mutant plants shows the following distinct changes in glucosinolate chain length profiles:
(1)  a reversal of the relative proportions of the two shortest glucosinolates,
(2)  a significant increase in the concentration of the longest glucosinolate,
(3)  an increase in total glucosinolate content in the mutant.
MAM3 knockout mutants on the contrary differ from wild type plants by a pronounced abundance of the second shortest glucosinolate and the depletion of the two longest glucosinolates. To clarify the contribution of the multifunctional enzymes MAM1 and MAM3 to the glucosinolate profile of Arabidopsis thaliana leaves, we simulated glucosinolate biosynthesis in a kinetic model, taking into account the structure of the pathway and measured enzymatic properties. The predicted glucosinolate profiles show all characteristics of the actual differences between wild-type and MAM1 mutants or MAM3 mutants, respectively. The model strongly supports experimental indications that the two MAM activities are not independent of each other. In particular, it showed that an elevated expression of MAM3 in the MAM1 mutant is critical in determining the glucosinolate profile of this plant line. The simulation was critical for this finding since it allowed us to assess the individual effects of two processes—the knocking out of MAM1 and the overexpression of MAM3—that are difficult to separate experimentally.  相似文献   

13.
14.
15.
In Arabidopsis thaliana, transamination steps in the leucine biosynthetic and catabolic pathways and the methionine (Met) chain elongation cycle of aliphatic glucosinolate formation are catalyzed by branched-chain aminotransferases (BCATs) that are encoded by a small gene family of six members. One member of this family, the plastid-located BCAT3, was shown to participate in both amino acid and glucosinolate metabolism. In vitro activity tests with the recombinant protein identified highest activities with the 2-oxo acids of leucine, isoleucine, and valine, but also revealed substantial conversion of intermediates of the Met chain elongation pathway. Metabolite profiling of bcat3-1 single and bcat3-1/bcat4-2 double knockout mutants showed significant alterations in the profiles of both amino acids and glucosinolates. The changes in glucosinolate proportions suggest that BCAT3 most likely catalyzes the terminal steps in the chain elongation process leading to short-chain glucosinolates: the conversion of 5-methylthiopentyl-2-oxo and 6-methylthiohexyl-2-oxo acids to their respective Met derivatives, homomethionine and dihomo-methionine, respectively. The enzyme can also at least partially compensate for the loss of BCAT4, which catalyzes the initial step of Met chain elongation by converting Met to 4-methylthio-2-oxobutanoate. Our results show the interdependence of amino acid and glucosinolate metabolism and demonstrate that a single enzyme plays a role in both processes.  相似文献   

16.
Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Functional characterization of genes involved in the flavonoid metabolism and its regulation requires in-depth analysis of flavonoid structure and composition of seed from the model plant Arabidopsis thaliana. Here, we report an analysis of the diverse and specific flavonoids that accumulate during seed development and maturation in wild types and mutants. Wild type seed contained more than 26 different flavonoids belonging to flavonols (mono and diglycosylated quercetin, kaempferol and isorhamnetin derivatives) and flavan-3-ols (epicatechin monomers and soluble procyanidin polymers with degrees of polymerization up to 9). Most of them are described for the first time in Arabidopsis. Interestingly, a novel group of four biflavonols that are dimers of quercetin-rhamnoside was also detected. Quercetin-3-O-rhamnoside (the major flavonoid), biflavonols, epicatechin and procyanidins accumulated in the seed coat in contrast to diglycosylated flavonols that were essentially observed in the embryo. Epicatechin, procyanidins and an additional quercetin-rhamnoside-hexoside derivative were synthesized in large quantities during seed development, whereas quercetin-3-O-rhamnoside displayed two peaks of accumulation. Finally, 11 mutants affected in known structural or regulatory functions of the pathway and their three corresponding wild types were also studied. Flavonoid profiles of the mutants were consistent with previous predictions based on genetic and molecular data. In addition, they also revealed the presence of new products in seed and underlined the plasticity of this metabolic pathway in the mutants.  相似文献   

17.
18.
Chen YZ  Pang QY  He Y  Zhu N  Branstrom I  Yan XF  Chen S 《Molecular plant》2012,5(5):1138-1150
To understand plant molecular networks of glucosinolate metabolism, perturbation of aliphatic glucosinolate biosynthesis was established using inducible RNA interference (RNAi) in Arabidopsis. Two RNAi lines were chosen for examining global protein and metabolite changes using complementary proteomics and metabolomics approaches. Proteins involved in metabolism including photosynthesis and hormone metabolism, protein binding, energy, stress, and defense showed marked responses to glucosinolate perturbation. In parallel, metabolomics revealed major changes in the levels of amino acids, carbohydrates, peptides, and hormones. The metabolomics data were correlated with the proteomics results and revealed intimate molecular connections between cellular pathways/processes and glucosinolate metabolism. This study has provided an unprecedented view of the molecular networks of glucosinolate metabolism and laid a foundation towards rationale glucosinolate engineering for enhanced defense and quality.  相似文献   

19.
Qu T  Liu R  Wang W  An L  Chen T  Liu G  Zhao Z 《Cryobiology》2011,63(2):111-117
Pectin methylesterases (PMEs) are important cell wall enzymes that may play important roles in plant chilling/freezing tolerance. We investigated the possible roles of brassinosteroids (BRs) in regulation of PMEs under chilling stress. Chilling stress or 24-epibrassinolide (eBL) treatments induced significant increases in PME activity in wild type (Col-0) seedlings of Arabidopsis. The chilling-stress-induced increases in PME activity were also found in bzr1-D mutant, a BZR1 stabilized mutant with a constitutively active BR signaling pathway, but not in bri1-116, a BR insensitive null allele of the BR receptor BRI1. The results suggest that the regulation of PME activity in Arabidopsis under chilling stress depends on the BR signaling pathway. Furthermore, we showed that the effect of chilling stress on PME activity was impaired in pme41, a knockout mutant of AtPME41. Semi-quantitative RT-PCR results showed that expression of AtPME41 was induced by chilling stress in wild type plants but not in the bri1-116 mutant. The expression of AtPME41 increased in bzr1-D and eBL treated wild type seedlings, but decreased in bri1-116 seedlings. Furthermore, ion leakage induced by low temperature were dramatically increased in both bri1-116 and pme41, while lipid peroxidation was increased in bri1-116 only. The results suggest that BRs may modulate total PME activity in Arabidopsis under chilling stress by regulating AtPME41 expression. Regulation of PME activity may serve as one of the mechanisms that BR participates in chilling tolerance of plants.  相似文献   

20.
拟南芥油菜素内酯信号转导研究进展   总被引:1,自引:0,他引:1  
油菜素内酯(brassinosteroid)信号首先被膜上的受体BRI1/BAK1复合体感知,然后在一系列蛋白参与下传递到核内,进一步调控下游基因的表达。本文综述了拟南芥中油菜素内酯信号转导研究的进展,并对今后的研究方向进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号