首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
大叶杨(Populus lasiocarpa)是中国特有的杨属物种,干旱和水淹是影响大叶杨生长和分布范围的两个关键因子。AP2/ERF转录因子家族在植物响应非生物胁迫中发挥重要作用。本研究采用转录组测序、生物信息学分析手段并结合分子实验验证初步鉴定了参与大叶杨干旱和水淹胁迫响应的关键基因。研究结果显示:(1)在大叶杨中分别鉴定到3,986/385个响应干旱/水淹胁迫的差异表达基因,其中包括237个同时响应干旱和水淹胁迫的差异表达基因。(2)在大叶杨中共鉴定到205个AP2/ERF家族成员,系统发育分析表明其在大叶杨中主要分为5个亚家族,并显著富集于差异表达基因中。(3)筛选部分胁迫前后差异表达的PlAP2/ERF基因进行qRT-PCR实验,经证实这些基因在大叶杨受到干旱/水淹胁迫时均可被诱导表达。综上,大叶杨在水淹胁迫下的差异表达基因数量明显少于干旱胁迫,AP2/ERF基因家族的部分基因参与到大叶杨干旱/水淹胁迫的应激表达过程。  相似文献   

3.
4.
5.
6.
7.
Cotton is one of the most important crops for its natural textile fibers in the world. However, it often suffered from drought stress during its growth and development, resulting in a drastic reduction in cotton productivity. Therefore, study on molecular mechanism of cotton drought-tolerance is very important for increasing cotton production. To investigate molecular mechanism of cotton drought-resistance, we employed RNA-Seq technology to identify differentially expressed genes in the leaves of two different cultivars (drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6) of cotton. The results indicated that there are about 13.38% to 18.75% of all the unigenes differentially expressed in drought-resistant sample and drought-sensitive control, and the number of differentially expressed genes was increased along with prolonged drought treatment. DEG (differentially expression gene) analysis showed that the normal biophysical profiles of cotton (cultivar J-13) were affected by drought stress, and some cellular metabolic processes (including photosynthesis) were inhibited in cotton under drought conditions. Furthermore, the experimental data revealed that there were significant differences in expression levels of the genes related to abscisic acid signaling, ethylene signaling and jasmonic acid signaling pathways between drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6, implying that these signaling pathways may participate in cotton response and tolerance to drought stress.  相似文献   

8.
9.
10.
11.
12.
To study gene expression patterns and to find genes related with microspore embryogenesis during pepper (Capsicum annuum L.) anther development, mRNA expression patterns were investigated at four developmental stages distinguished according to the size of flower bud, the color of anthers, and the cytological feature of microspores. Through GeneFishing using 120 random primers, 81 genes were found to be differentially expressed as anthers develop. We directly sequenced seven of them, which were either up- or down-regulated at stage 2, since microspores at stage 2 are known to be responsive to the induction signals for microspore embryogenesis. Nucleotide sequence analysis of the isolated differentially expressed genes (DEGs) and the comparison of these sequences with the GenBank data indicate that DEG13 is a novel gene, which is highly homologous to a stress-related gene of potato, POACT88 (≈91%) and to alcohol dehydrogenase gene of Arabidopsis (≈70%), whose expression is also tightly related to stresses. In vitro data also showed that DEG13 was more abundantly expressed in heat-treated microspores than in untreated microspores. Here, we report developmental stage-specific gene expression patterns during anther development and a novel stress-related gene, DEG13, which may be involved in microspore embryogenesis in response to heat treatment.  相似文献   

13.
14.
15.

Background

Durum wheat often faces water scarcity and high temperatures, two events that usually occur simultaneously in the fields. Here we report on the stress responsive strategy of two durum wheat cultivars, characterized by different water use efficiency, subjected to drought, heat and a combination of both stresses.

Results

The cv Ofanto (lower water use efficiency) activated a large set of well-known drought-related genes after drought treatment, while Cappelli (higher water use efficiency) showed the constitutive expression of several genes induced by drought in Ofanto and a modulation of a limited number of genes in response to stress. At molecular level the two cvs differed for the activation of molecular messengers, genes involved in the regulation of chromatin condensation, nuclear speckles and stomatal closure. Noteworthy, the heat response in Cappelli involved also the up-regulation of genes belonging to fatty acid β-oxidation pathway, glyoxylate cycle and senescence, suggesting an early activation of senescence in this cv. A gene of unknown function having the greatest expression difference between the two cultivars was selected and used for expression QTL analysis, the corresponding QTL was mapped on chromosome 6B.

Conclusion

Ofanto and Cappelli are characterized by two opposite stress-responsive strategies. In Ofanto the combination of drought and heat stress led to an increased number of modulated genes, exceeding the simple cumulative effects of the two single stresses, whereas in Cappelli the same treatment triggered a number of differentially expressed genes lower than those altered in response to heat stress alone. This work provides clear evidences that the genetic system based on Cappelli and Ofanto represents an ideal tool for the genetic dissection of the molecular response to drought and other abiotic stresses.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-821) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
18.
Sorghum with its remarkable adaptability to drought and high temperature provides a model system for grass genomics and resource for gene discovery especially for abiotic stress tolerance. Group 3 LEA genes from barley and rice have been shown to play crucial role in abiotic stress tolerance. Here, we present a genome-wide analysis of LEA3 genes in sorghum. We identified four genes encoding LEA3 proteins in the sorghum genome and further classified them into LEA3A and LEA3B subgroups based on the conservation of LEA3 specific motifs. Further, expression pattern of these genes were analyzed in seeds during development and vegetative tissues under abiotic stresses. SbLEA3A group genes showed expression at early stage of seed development and increased significantly at maturity, while SbLEA3B group genes expressed only in matured seeds. Expression of SbLEA3 genes in response to abiotic stresses such as soil moisture deficit (drought), osmotic, salt, and temperature stresses, and exogenous ABA treatments was also studied in the leaves of 2-weeks-old seedlings. ABA and drought induced the expression of all LEA3 genes, while cold and heat stress induced none of them. Promoter analysis revealed the presence of multiple ABRE core cis-elements and a few low temperature response (LTRE)/drought responsive (DRE) cis-elements. This study suggests non-redundant function of LEA3 genes in seed development and stress tolerance in sorghum.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号