首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seed germination is a complex trait determined by both quantitative trait loci (QTLs) and environmental factors and also their interactions. In this study, we mapped one major QTLqSE3 for seed germination and seedling establishment under salinity stress in rice. To understand the molecular basis of this QTL, we isolated qSE3 by map‐based cloning and found that it encodes a K+ transporter gene, OsHAK21. The expression of qSE3 was significantly upregulated by salinity stress in germinating seeds. Physiological analysis suggested that qSE3 significantly increased K+ and Na+ uptake in germinating seeds under salinity stress, resulting in increased abscisic acid (ABA) biosynthesis and activated ABA signaling responses. Furthermore, qSE3 significantly decreased the H2O2 level in germinating seeds under salinity stress. All of these seed physiological changes modulated by qSE3 might contribute to seed germination and seedling establishment under salinity stress. Based on analysis of single‐nucleotide polymorphism data of rice accessions, we identified a HAP3 haplotype of qSE3 that was positively correlated with seed germination under salinity stress. This study provides important insights into the roles of qSE3 in seed germination and seedling establishment under salinity stress and facilitates the practical use of qSE3 in rice breeding.  相似文献   

2.
Chickpea seeds of Pusa 1053 (Mediterranean) and Pusa 256 (native) were magnetoprimed with 100 mT static magnetic field for 1 h to evaluate the effect of magnetopriming on germination of seeds under saline conditions. Enhanced rate of germination and seedling growth parameters (root and shoot length, and vigour indices) under different salinity levels indicated that magnetopriming was more effective in alleviating salinity stress at early seedling stage in Pusa 1053 as compared to Pusa 256. Dynamics of seed water absorption in magnetoprimed seeds showed increased water uptake in Pusa 1053 under non-saline as compared to saline conditions. This could have resulted in faster hydration of enzymes in primed seeds leading to higher rate of germination. Total amylase, protease and dehydrogenase activities were higher in primed seeds as compared to unprimed seeds under both non-saline and saline conditions. Production of superoxide radicals was enhanced in germinating seeds of both the genotypes under salinity irrespective of priming. Increased levels of hydrogen peroxide in germinating magnetoprimed seeds, under both the growing conditions, suggested its role in promotion of germination. Our results showed that magnetopriming of dry seeds of chickpea can be effectively used as a pre-sowing treatment for mitigating adverse effects of salinity at seed germination and early seedling growth.  相似文献   

3.
Restoration of submerged aquatic vegetation from seed has been hampered by a lack of information on the appropriate conditions for collecting, processing, and storing seeds prior to dispersal. Seeds must be processed and stored under conditions that maintain seed viability, meet dormancy requirements, and prevent premature germination. This study examined the effects of collection date, processing technique, aeration, storage and induction temperature and salinity, and storage period on seed germination of two mesohaline aquatic species, Potamogeton perfoliatus and Ruppia maritima. Collection date and processing technique were significant factors affecting seed yield from donor populations. Seeds of both species remained viable and germinated best when stored at 4°C, and then exposed to freshwater induction conditions. However, their responses to other factors differed. Aeration during storage was necessary in order to maintain viability of P. perfoliatus seeds, whereas it was unnecessary for R. maritima seeds. Storage in freshwater at 4°C prevented germination of P. perfoliatus seeds, while high salinity during cold storage was necessary to minimize premature germination of R. maritima. Mean germination time of P. perfoliatus was dependent on storage salinity; in contrast, mean germination time of R. maritima seeds was dependent on induction salinity. These differences indicate that the methods required to produce large quantities of underwater plant seed amenable to large‐scale restoration efforts must be tailored to the specific requirements of individual species and must consider the range of processes from initial harvest through seed testing prior to field establishment.  相似文献   

4.
Salt tolerance of halophytes corresponds with the habitat requirement of the species. It is an important factor during the germination phase and it can determine successful establishment. This paper presents the effects of alternating temperature–light regimes (4/8°C, 10/20°C, 20/32°C; 12 h dark: 12 h light) and different salinity levels (0, 200, 400, 600 mmol l21 NaCl) on seed germination of five halophytes, Halimione pedunculata, Bupleurum tenuissimum, Aster tripolium, Triglochin maritimum and Armeria maritima. The five species differ with respect to family and life‐form and spatially correspond to a decreasing salt gradient (i.e. distance from salt water, with H. pedunculata being the most tolerant and A. maritima being the least). Armeria maritima, A. tripolium and T. maritimum seeds were additionally subjected to a cold stratification experiment. The results showed that Halimione pedunculata, an annual therophyte of year‐round heavily saline habitats, was dormant under all experimental conditions. Bupleurum tenuissimum, a species typical to sites of varying salinity prone to leaching during spring and autumn rainfall, germinated best under cold and warm temperatures, but only under non‐saline conditions. Aster tripolium and T. maritimum, close neighbours in salt marshes, showed very similar germination behaviour: seeds of both species tolerated high levels of salinity and germinated best in summer temperatures during periods of highest soil salinity, and germination was significantly promoted by cold. Armeria maritima, a species usually found on the marginal fringes of saline habitats, germinated only under low salt levels and maximum germination was under cold (spring) and warm (autumn) temperatures, with no significant effect of cold stratification.  相似文献   

5.
6.
Alfalfa, the most widely grown leguminous crop in the world, is generally exposed to severe salinity stress in Tunisia, notably affecting its germination performance. Toward a better understanding of alfalfa seed vigor, we have used proteomics to characterize protein changes occurring during germination and osmopriming, a pretreatment that accelerates germination and improves seedling uniformity particularly under stress conditions. The data revealed that germination was accompanied by dynamic changes of 79 proteins, which are mainly involved in protein metabolism, cell structure, metabolism, and defense. Comparative proteomic analysis also revealed 63 proteins specific to osmopriming, 65 proteins preferentially varying during germination, and 14 proteins common to both conditions. Thus, the present study unveiled the unexpected finding that osmopriming cannot simply be considered as an advance of germination-related processes but involves other mechanisms improving germination such as the mounting of defense mechanisms enabling osmoprimed seeds to surmount environmental stresses potentially occurring during germination. The present results therefore provide novel avenues toward understanding the mechanisms of invigoration of low vigor seeds by priming treatments that are widely used both in commercial applications and in developing countries (on farm seed priming) to better control crop yields.  相似文献   

7.
Suaeda aegyptiaca is a facultative halophyte found in saline and non‐saline habitats of the Arab Gulf desert, which produces small‐sized undispersible seeds. The interactive effects of maternal salinity and other environmental conditions, such as salinity, light and temperatures, that are prevailing during seed germination have received little attention for a facultative halophyte. This study tested the effects of maternal salinity on salt tolerance during seed germination of S. aegyptiaca under different light and temperature regimes. Seeds collected from both saline and non‐saline habitats of the United Arab Emirates (UAE) were germinated in 0, 50, 100, 200 and 400 mM NaCl, and incubated at 15/25°C, 20/30°C and 25/35°C in both 12‐h light/12‐h dark regimes and continuous darkness. Generally, seeds of the non‐saline habitat were 56% heavier and attained greater germination at the lower temperatures than seeds of the saline habitat. Seeds of the saline habitat germinated better in saline solutions at higher temperatures and in light. Germination was faster for seeds of the saline habitat than for seeds of non‐saline habitats. Germination recovery after transfer to distilled water was significantly greater for seeds from the non‐saline habitat, compared with seeds from saline habitats. Recovery was greater at lower and/or moderate temperatures, compared with at higher temperatures. Germination was significantly faster during recovery, compared with in the saline solutions. The study indicates that the maternal effect of salinity was confounded with the seed‐size effect and it cannot be conclusively confirmed.  相似文献   

8.
Soil salinization and alkalinization frequently co-occur in nature, but there is little information on the interactive effects of salt and alkali stresses on plants. Seed germination and early seedling growth are crucial stages for plant establishment. We investigated the interactive effects of salt and alkali stresses on seed germination, germination recovery and seedling growth of a halophyte Spartina alterniflora. Seed germination percentage was not significantly reduced at low salinity (≤ 200 mM) at pH 6.63–9.95, but decreased with increased salinity and pH. Ungerminated seeds germinated well after transfer to distilled water from treatment solutions, indicating that seeds can remain viable in high salt–alkaline habits. Shoot growth was stimulated at low salinity and pH, but decreased with increased salinity and pH. Radicle elongation decreased sharply with increased salinity and pH, and was significantly inhibited when pH ≥ 9.0, indicating that the radicles are very sensitive to salt–alkaline stress. The deleterious effects of salinity or high pH alone were less than when combined. A reciprocal enhancement of salt and alkali stresses is a characteristic feature for salt–alkaline stress. Stepwise regression analysis indicates that salinity is the dominant factor, while pH and buffer capacity are secondary for salt–alkaline mixed stress.  相似文献   

9.
Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two‐dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5‐fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule‐bound starch synthase 1, Os03g0842900 (putative steroleosin‐B), N‐carbamoylputrescine amidase, spermidine synthase 1, tubulin α‐1 chain and glutelin type‐A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.  相似文献   

10.
In arid zones, precipitation distribution is extremely uneven, with saline‐waterlogging and dry–moist cycles appearing frequently, which negatively impact on seed germination and seedling establishment. The responses of two halophytes, Suaeda physophora and Haloxylon ammodendron, and a xerophyte, Haloxylon persicum, to saline‐waterlogging and dry–moist cycles were studied. The results showed that aeration increased seed germination for all species when seeds were submerged in NaCl, especially for xerophyte. Compared with S. physophora and H. ammodendron, seed germination, recovery germination, and total germination of H. persicum were much lower when seeds were submerged in 700 mm NaCl, especially for the recovery germination and total germination of nongerminated seeds when the seeds were desiccated and then transferred to distilled water. However, when the seeds were submerged in 700 mm NaCl with aeration, the seed germination, recovery germination, and total germination of nongerminated seeds transferred to distilled water increased dramatically for H. persicum. No adverse effect of desiccation was found on those values of nongerminated seeds pretreated in NaCl with or without aeration for the two halophytes. In conclusion, seeds of the two halophytes were more tolerant to waterlogging and dry–moist cycles than seeds of the xerophyte during emergence under saline conditions; these traits may be important for halophytes to survive extreme saline environments during the seed germination stage.  相似文献   

11.
12.
13.
We examined the role of gibberellins (GAs) in germination of Arabidopsis seeds by a proteomic approach. For that purpose, we used two systems. The first system consisted of seeds of the GA-deficient ga1 mutant, and the second corresponded to wild-type seeds incubated in paclobutrazol, a specific GA biosynthesis inhibitor. With both systems, radicle protrusion was strictly dependent on exogenous GAs. The proteomic analysis indicated that GAs do not participate in many processes involved in germination sensu stricto (prior to radicle protrusion), as, for example, the initial mobilization of seed protein and lipid reserves. Out of 46 protein changes detected during germination sensu stricto (1 d of incubation on water), only one, corresponding to the cytoskeleton component alpha-2,4 tubulin, appeared to depend on the action of GAs. An increase in this protein spot was noted for the wild-type seeds but not for the ga1 seeds incubated for 1 d on water. In contrast, GAs appeared to be involved, directly or indirectly, in controlling the abundance of several proteins associated with radicle protrusion. This is the case for two isoforms of S-adenosyl-methionine (Ado-Met) synthetase, which catalyzes the formation of Ado-Met from Met and ATP. Owing to the housekeeping functions of Ado-Met, this event is presumably required for germination and seedling establishment, and might represent a major metabolic control of seedling establishment. GAs can also play a role in controlling the abundance of a beta-glucosidase, which might be involved in the embryo cell wall loosening needed for cell elongation and radicle extension.  相似文献   

14.
盐胁迫对2种珍贵速生树种种子萌发及幼苗生长的影响   总被引:3,自引:0,他引:3  
以1/2Hoagland营养液为基础培养液,研究了在0.1%、0.2%、0.4%和0.6%NaCl胁迫条件下,毛红椿〔Toona ciliata Roem. var. pubescens(Franch.)Hand.-Mazz.〕和水松〔Glyptostrobus pensilis(Staunt.ex D.Don)K.Koch〕的种子萌发和幼苗生长情况。结果表明,随着NaCl浓度的增加,2个树种的种子萌发率和简化苗木活力指数均明显下降,在0.1%、0.2%、0.4%和0.6%NaCl胁迫条件下,毛红椿和水松种子的最终萌发率分别为89.3%、87.3%、62.7%、32.0%和26.0%、16.7%、6.0%、3.3%,简化苗木活力指数分别为1.39~0.08和1.52~0.07,且毛红椿的种子萌发率和简化苗木活力指数均明显高于水松。萌发恢复实验结果表明,高浓度NaCl处理后的种子具有较高的萌发恢复率。根据实验结果初步判定毛红椿种子具有较强的耐盐性。  相似文献   

15.
To test the role of the seed mucilage of Plantago minuta Pall. in regulating germination under osmotic stress and cycles of hydration and dehydration, two experiments were carried out using seeds with intact mucilage and mucilage‐free seeds. In Experiment 1 seeds were immersed in a range of iso‐osmotic polyethylene glycol solutions (?1.15 to 0 MPa) for 14 days; any ungerminated seeds were transferred to deionized water to investigate the recovery germination. In Experiment 2 seeds were immersed in deionized water for 24 h, and were then incubated on filter paper for an additional 13 days to ensure complete desiccation before reimbibition to test the germination recovery percentage. Under mild osmotic stress (?0.73 to 0 MPa), the intact seeds with mucilage were shown to have higher germination rates than the mucilage‐free seeds, indicating that the mucilage led to a “fast sprouting” germination strategy under mild osmotic stress. However, when seeds were exposed to high osmotic stress (?1.15 MPa), the mucilage apparently slowed the germination rate, resulting in a “risk‐balancing” germination strategy. Extreme drought induced by polyethylene glycol solution and the desiccation pretreatment accelerated germination rates compared to non‐pretreated seeds; both germination potential and recovery percentage of the mucilage seeds were significantly higher than that of the mucilage‐free seeds. Our results revealed that the seed mucilage of P. minuta plays a crucial role in regulating seed germination rates and the germination strategies adopted by controlling seed water absorption when the seeds experience different osmotic stresses or alternating wet and dry conditions.  相似文献   

16.
Seed imbibition and radicle emergence are generally less affected by salinity in soybean than in other crop plants. In order to unveil the mechanisms underlying this remarkable salt tolerance of soybean at seed germination, a comparative label‐free shotgun proteomic analysis of embryonic axes exposed to salinity during germination sensu stricto (GSS) was conducted. The results revealed that the application of 100 and 200 mmol/L NaCl stress was accompanied by significant changes (>2‐fold, P<0.05) of 97 and 75 proteins, respectively. Most of these salt‐responsive proteins (70%) were classified into three major functional categories: disease/defense response, protein destination and storage and primary metabolism. The involvement of these proteins in salt tolerance of soybean was discussed, and some of them were suggested to be potential salt‐tolerant proteins. Furthermore, our results suggest that the cross‐protection against aldehydes, oxidative as well as osmotic stress, is the major adaptive response to salinity in soybean.  相似文献   

17.
Phleum sardoum is an endemic psammophilous species of Sardinia, growing exclusively on coastal sandy dunes. The effect of glumes on seed germination, germination requirements at constant (5–25°C) and alternating (25/10°C) temperatures, both in the light (12/12 h) and in the dark were evaluated, as well as the effect of a dry after‐ripening period (90 days at 25°C), the salt stress effect (0–600 mmol NaCl) and its recovery on seed germination. The presence of glumes reduced final germination percentages. For fresh naked seeds, high germination percentages were observed at 10°C. Dry after‐ripening increased germination rate at low temperatures, but did not affect final germination percentages. NaCl determined a secondary salt‐induced dormancy which recovery interrupted only partially. Our results highlighted that this species has its optimum of germination during autumn–winter when, under a Mediterranean climate, water availability is highest and soil salinity levels are minimal.  相似文献   

18.
盐生植物种子萌发对环境的适应对策   总被引:45,自引:0,他引:45  
渠晓霞  黄振英 《生态学报》2005,25(9):2389-2398
盐生环境是一种严峻的胁迫环境,对植物的生长、发育、繁殖等生活史的各阶段都产生着重要的影响。盐生植物是生长在盐渍土壤上的一类天然植物区系,它们在长期的进化过程中形成了一系列适应盐生生境的特殊生存策略。一般情况下,盐生植物种子对环境的适应能力,是植物对盐生环境适应性的重要体现;而植物发育早期对盐度的适应能力又是决定物种分布和群落组成的关键因素。在对国内外相关文献进行分析归纳的基础上,从盐分对种子萌发的影响机理及植物种子萌发对盐生环境的适应对策两个方面综述了植物种子休眠萌发与盐生环境的关系。  相似文献   

19.
Seed germination and seedling growth of the annual halophyte species Suaeda japonica Makino were investigated in response to variable salinity of sediment pore water. The germination percentage of S. japonica’s soft brown seeds, which are dominant among dimorphic seeds, decreased with an increase in salinity, although germination was still observed at 1200‐mM NaCl concentration. The germination percentage and germination speed observed in April were higher than those observed in December when treated with sediment water with 400–1200 mM of NaCl concentrations. These data suggest that S. japonica seedlings could be established on sediments that experience high temperatures. Germination recovery of S. japonica seeds transferred from 600‐mM NaCl containing sediment (seawater equivalent) was lowest among 0–1200‐mM NaCl treatments, implying the low tolerance of seawater conditions of S. japonica seeds. Seeds germinated in 900‐ to 1200‐mM NaCl medium showed poor growth, but survived, in hypersaline conditions, and exhibited improvement in growth upon transfer to lower salinity.  相似文献   

20.
Malcolm  C.V.  Lindley  V.A.  O'Leary  J.W.  Runciman  H.V.  Barrett-Lennard  E.G. 《Plant and Soil》2003,253(1):171-185
Saline sites suffer variations in surface salinity, available soil water, temperature, soil crust strength and other factors which can influence germination and establishment. For establishment to occur the germinating seed must capitalise on a window of opportunity. This window can be widened by placing seeds in a low-salt niche, covering the seeds with a mulch (such as vermiculite), spraying the seed and mulch placement with a coating which may stabilise the favourable situation and raise soil temperature. In this paper it is shown that using seeds collected from plants of Atriplex amnicola which produce many volunteer seedlings in their vicinity can assist establishment from direct seeding. These seeds had the ability to germinate under saltier and cooler conditions than seeds from A. amnicola bushes which did not produce volunteers. Seeds of a halophyte (Atriplex lentiformis) and a non-halophyte (Medicago sativa) are able to imbibe water from a saline substrate in a similar manner. The water enables the seeds of both species to mobilise stored growth materials and produce and elongate radicles. When the seedlings try to erect a hypocotyl and spread their cotyledons, the non-halophyte, in a saline medium, becomes flaccid, distorted and dies. The halophyte seedling shows evidence of high salt tolerance in the form of succulence of cotyledons and trichomes on true leaves even before they are visible and goes on to successfully develop a functioning plant. Nevertheless, germination of halophyte seeds is inhibited or severely reduced at salinity levels above 250 mM NaCl and slowed and reduced progressively up to those levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号