首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Olive (Olea europea L) is one of the most valuable and widespread fruit trees in the Mediterranean area. To breed olive for resistance to salinity, an environmental constraint typical of the Mediterranean, is an important goal. The photosynthetic limitations associated with salt stress caused by irrigation with saline (200 mm ) water were assessed with simultaneous gas‐exchange and fluorescence field measurements in six olive cultivars. Cultivars were found to possess inherently different photosynthesis when non‐stressed. When exposed to salt stress, cultivars with inherently high photosynthesis showed the highest photosynthetic reductions. There was no relationship between salt accumulation and photosynthesis reduction in either young or old leaves. Thus photosynthetic sensitivity to salt did not depend on salt exclusion or compartmentalization in the old leaves of the olive cultivars investigated. Salt reduced the photochemical efficiency, but this reduction was also not associated with photosynthesis reduction. Salt caused a reduction of stomatal and mesophyll conductance, especially in cultivars with inherently high photosynthesis. Mesophyll conductance was generally strongly associated with photosynthesis, but not in salt‐stressed leaves with a mesophyll conductance higher than 50 mmol m?2 s?1. The combined reduction of stomatal and mesophyll conductances in salt‐stressed leaves increased the CO2 draw‐down between ambient air and the chloroplasts. The CO2 draw‐down was strongly associated with photosynthesis reduction of salt‐stressed leaves but also with the variable photosynthesis of controls. The relationship between photosynthesis and CO2 draw‐down remained unchanged in most of the cultivars, suggesting no or small changes in Rubisco activity of salt‐stressed leaves. The present results indicate that the low chloroplast CO2 concentration set by both low stomatal and mesophyll conductances were the main limitations of photosynthesis in salt‐stressed olive as well as in cultivars with inherently low photosynthesis. It is consequently suggested that, independently of the apparent sensitivity of photosynthesis to salt, this effect may be relieved if conductances to CO2 diffusion are restored.  相似文献   

2.
We examined factors that limit diurnal and seasonal photosynthesis in Leymus cinereus, a robust tussock grass from shrub-steppes of western North America. Data from plants in a natural stand and in experimental field plots indicate that this bunchgrass has 1) a high photosynthetic capacity, 2) high leaf nitrogen content and high nitrogen-use efficiency, 3) a steep leaf-to-air diffusion gradient for carbon dioxide, which enhances intrinsic water-use efficiency, and 4) photosynthetic tissues that tolerate severe water stress and recover quickly from moderate water stress. Midday depressions of CO2 assimilation (A) and stomatal conductance were slight in plants with plentiful water, but marked in plants subject to moderate water stress. Midday stomatal closure in moderately stressed plants reduced intercellular carbon dioxide concentration (ci) by ≈40 μl liter-1. The maximum rate of A achieved during the day for severely stressed plants (predawn water potential = -4 MPa) was one-third and daily carbon gain per unit leaf area was about one-fourth that of well-watered plants. For plants in the natural stand, CO2-saturated photosynthesis declined almost linearly with decreasing soil water availability over the growing season, whereas there was little effect on A at CO2 ambient levels or on carboxylation efficiency until predawn water potentials reached -1.8 MPa. Nitrogen-use efficiency declined with diminishing soil moisture, but there was no seasonal change in stomatal limitation or instantaneous water-use efficiency as estimated from A vs. ci curves at optimal leaf temperature and moderate atmospheric evaporative demand. Thus, reduced stomatal conductance in response to increased evaporative demand may increase stomatal limitation diumally, but over the growing season, stomatal limitation estimated from A vs. ci curves is relatively constant because maximum stomatal conductance is closely tuned to the CO2 assimilatory capacity of the mesophyll.  相似文献   

3.
Very few studies have attempted to disentangle the respective role of ontogeny and water stress on leaf photosynthetic attributes. The relative significance of both effects on photosynthetic attributes has been investigated in leaves of field‐grown almond trees [Prunus dulcis (Mill.) D. A. Webb] during four growth cycles. Leaf ontogeny resulted in enhanced leaf dry weight per unit area (Wa), greater leaf dry‐to‐fresh weight ratio and lower N content per unit of leaf dry weight (Nw). Concomitantly, area‐based maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), mesophyll conductance to CO2 diffusion (gm)′ and light‐saturated net photosynthesis (Amax) declined in both well‐watered and water‐stressed almond leaves. Although gm and stomatal conductance (gs) seemed to be co‐ordinated, a much stronger coordination in response to ontogeny and prolonged water stress was observed between gm and the leaf photosynthetic capacity. Under unrestricted water supply, the leaf age‐related decline of Amax was equally driven by diffusional and biochemical limitations. Under restricted soil water availability, Amax was mainly limited by gs and, to a lesser extent, by photosynthetic capacity and gm. When both ontogeny and water stress effects were combined, diffusional limitations was the main determinant of photosynthesis limitation, while stomatal and biochemical limitations contributed similarly.  相似文献   

4.
While the adverse effects of elevated salinity levels on leaf gas exchange in many crops are not in dispute, representing such effects on leaf photosynthetic rates (A) continues to draw research attention. Here, an optimization model for stomatal conductance (gc) that maximizes A while accounting for mesophyll conductance (gm) was used to interpret new leaf gas exchange measurements collected for five irrigation water salinity levels. A function between chloroplastic CO2 concentration (cc) and intercellular CO2 concentration (ci) modified by salinity stress to estimate gm was proposed. Results showed that with increased salinity, the estimated gm and maximum photosynthetic capacity were both reduced, whereas the marginal water use efficiency λ increased linearly. Adjustments of gm, λ and photosynthetic capacity were shown to be consistent with a large corpus of drought‐stress experiments. The inferred model parameters were then used to evaluate the combined effects of elevated salinity and atmospheric CO2 concentration (ca) on leaf gas exchange. For a given salinity level, increasing ca increased A linearly, but these increases were accompanied by mild reductions in gc and transpiration. The ca level needed to ameliorate A reductions due to increased salinity is also discussed using the aforementioned model calculations.  相似文献   

5.
In this study it has been shown that increased diffusional resistances caused by salt stress may be fully overcome by exposing attached leaves to very low [CO2] (~ 50 µmol mol?1), and, thus a non‐destructive‐in vivo method to correctly estimate photosynthetic capacity in stressed plants is reported. Diffusional (i.e. stomatal conductance, gs, and mesophyll conductance to CO2, gm) and biochemical limitations to photosynthesis (A) were measured in two 1‐year‐old Greek olive cultivars (Chalkidikis and Kerkiras) subjected to salt stress by adding 200 mm NaCl to the irrigation water. Two sets of ACi curves were measured. A first set of standard ACi curves (i.e. without pre‐conditioning plants at low [CO2]), were generated for salt‐stressed plants. A second set of ACi curves were measured, on both control and salt‐stressed plants, after pre‐conditioning leaves at [CO2] of ~ 50 µmol mol?1 for about 1.5 h to force stomatal opening. This forced stomata to be wide open, and gs increased to similar values in control and salt‐stressed plants of both cultivars. After gs had approached the maximum value, the ACi response was again measured. The analysis of the photosynthetic capacity of the salt‐stressed plants based on the standard ACi curves, showed low values of the Jmax (maximum rate of electron transport) to Vcmax (RuBP‐saturated rate of Rubisco) ratio (1.06), that would implicate a reduced rate of RuBP regeneration, and, thus, a metabolic impairment. However, the analysis of the ACi curves made on pre‐conditioned leaves, showed that the estimates of the photosynthetic capacity parameters were much higher than in the standard ACi responses. Moreover, these values were similar in magnitude to the average values reported by Wullschleger (Journal of Experimental Botany 44, 907–920, 1993) in a survey of 109 C3 species. These findings clearly indicates that: (1) salt stress did affect gs and gm but not the biochemical capacity to assimilate CO2 and therefore, in these conditions, the sum of the diffusional resistances set the limit to photosynthesis rates; (2) there was a linear relationship (r2 = 0.68) between gm and gs, and, thus, changes of gm can be as fast as those of gs; (3) the estimates of photosynthetic capacity based on ACi curves made without removing diffusional limitations are artificially low and lead to incorrect interpretations of the actual limitations of photosynthesis; and (4) the analysis of the photosynthetic properties in terms of stomatal and non‐stomatal limitations should be replaced by the analysis of diffusional and non‐diffusional limitations of photosynthesis. Finally, the C3 photosynthesis model parameterization using in vitro‐measured and in vivo‐measured kinetics parameters was compared. Applying the in vivo‐measured Rubisco kinetics parameters resulted in a better parameterization of the photosynthesis model.  相似文献   

6.
Light gradients within tree canopies play a major role in the distribution of plant resources that define the photosynthetic capacity of sun and shade leaves. However, the biochemical and diffusional constraints on gas exchange in sun and shade leaves in response to light remain poorly quantified, but critical for predicting canopy carbon and water exchange. To investigate the CO2 diffusion pathway of sun and shade leaves, leaf gas exchange was coupled with concurrent measurements of carbon isotope discrimination to measure net leaf photosynthesis (An), stomatal conductance (gs) and mesophyll conductance (gm) in Eucalyptus tereticornis trees grown in climate controlled whole‐tree chambers. Compared to sun leaves, shade leaves had lower An, gm, leaf nitrogen and photosynthetic capacity (Amax) but gs was similar. When light intensity was temporarily increased for shade leaves to match that of sun leaves, both gs and gm increased, and An increased to values greater than sun leaves. We show that dynamic physiological responses of shade leaves to altered light environments have implications for up‐scaling leaf level measurements and predicting whole canopy carbon gain. Despite exhibiting reduced photosynthetic capacity, the rapid up‐regulation of gm with increased light enables shade leaves to respond quickly to sunflecks.  相似文献   

7.
In recent years, many studies have focused on the limiting role of mesophyll conductance (gm) to photosynthesis (An) under water stress, but no studies have examined the effect of drought on gm through the forest canopy. We investigated limitations to An on leaves at different heights in a mixed adult stand of sessile oak (Quercus petraea) and beech (Fagus sylvatica) trees during a moderately dry summer. Moderate drought decreased An of top and lowest beech canopy leaves much more than in leaves located in the mid canopy; whereas in oak, An of the lower canopy was decreased more than in sunlit leaves. The decrease of An was probably not due to leaf‐level biochemistry given that VCmax was generally unaffected by drought. The reduction in An was instead associated with reduction in stomatal and mesophyll conductances. Drought‐induced increases in stomatal limitations were largest in leaves from the top canopy, whereas drought‐induced increases in mesophyll limitations were largest in leaves from the lowest canopy. Sensitivity analysis highlighted the need to decompose the canopy into different leaf layers and to incorporate the limitation imposed by gm when assessing the impact of drought on the gas exchange of tree canopies.  相似文献   

8.
The effects of salinity on growth, stomatal conductance, photosynthetic capacity, and carbon isotope discrimination (Δ) of Gossypium hirsutum L. and Phaseolus vulgaris L. were evaluated. Plants were grown at different NaCl concentrations from 10 days old until mature reproductive structures were formed. Plant growth and leaf area development were strongly reduced by salinity, in both cotton and bean. Stomatal conductance also was reduced by salinity. The Δ always declined with increasing external salinity concentration, indicating that stomatal limitation of photosynthesis was increased. In cotton plant dry matter, Δ correlated with the ratio of intercellular to atmospheric CO2 partial pressures (pl/pa) calculated by gas exchange. This correlation was not clear in bean plants, although Δ showed a more pronounced salt induced decline in bean than in cotton. Possible effects of heterogeneity of stomatal aperture and consequent overestimation of pl as determined from gas exchange could explain these results. Significant differences of Δ between leaf and seed material were observed in cotton and bean. This suggests different patterns of carbon allocation between leaves and seeds. The photon yield of O2 evolution determined at rate-limiting photosynthetic photon flux density was insensitive to salinity in both species analyzed. The light- and CO2-saturated rate of CO2 uptake and O2 evolution showed a salt induced decline in both species. Possible explanations of this observation are discussed. O2 hypersensitivity was observed in salt stressed cotton plants. These results clearly demonstrate that the effect of salinity on assimilation rate was mostly due to the reduction of stomatal conductance, and that calculation of pl may be overestimated in salt stressed plants, because of heterogeneity of stomatal aperture over the leaf surface.  相似文献   

9.
A unique approach was used to evaluate stomatal and nonstomatal constraints to photosynthesis in 19 naturally occurring, deciduous tree species on xeric, mesic and wetmesic sites in central Pennsylvania, USA, during relatively wet (1990) and dry (1991) growing seasons. All species exhibited significantly decreased stomatal conductance to CO2 (gc) in 1991 compared to 1990. The mesic species had drought related decreases in photosynthesis (A) attributed primarily to increased absolute stomatal limitation to A (Lg), whereas in the wet-mesic species, the absolute mesophyll limitation (Lm) was at least as important as Lg in limiting A during drought. The xeric species maintained relatively high A during drought despite decreased gc. In the xeric and mesic species, Lm decreased and Lg increased during drought due to stomatal closure. From xeric to mesic to wet-mesic, the relative stomatal limitation (Ig) generally decreased faster, and relative mesophyll limitations to A increased faster, with increasing gc suggesting greater photosynthetic capacity (i.e. greater potential maximum A) with increasing drought tolerance rank of species. Few species exhibited a significant drought-related decrease in photosynthetic capacity. The results of this landscape-based study indicate that the interaction of stomatal and nonstomatal limitations of A vary in a manner consistent with species' drought tolerance and site conditions, and that nonstomatal constraints to A in field plants during a moderate, season-long drought were generally not as severe as reported in controlled studies.  相似文献   

10.
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.  相似文献   

11.
Leaf age-dependent changes in structure, nitrogen content, internal mesophyll diffusion conductance (gm), the capacity for photosynthetic electron transport (Jmax) and the maximum carboxylase activity of Rubisco (Vcmax) were investigated in mature non-senescent leaves of Laurus nobilis L., Olea europea L. and Quercus ilex L. to test the hypothesis that the relative significance of biochemical and diffusion limitations of photosynthesis changes with leaf age. The leaf life-span was up to 3 years in L. nobilis and O. europea and 6 years in Q. ilex. Increases in leaf age resulted in enhanced leaf dry mass per unit area (MA), larger leaf dry to fresh mass ratio, and lower nitrogen contents per dry mass (NM) in all species, and lower nitrogen contents per area (NA) in L. nobilis and Q. ilex. Older leaves had lower gm, Jmax and Vcmax. Due to the age-dependent increase in MA, mass-based gm, Jmax and Vcmax declined more strongly (7- to 10-fold) with age than area-based (5- to 7-fold) characteristics. Diffusion conductance was positively associated with foliage photosynthetic potentials. However, this correlation was curvilinear, leading to lower ratio of chloroplastic to internal CO2 concentration (Cc/Ci) and larger drawdown of CO2 from leaf internal air space to chloroplasts (ΔC) in older leaves with lower gm. Overall the age-dependent decreases in photosynthetic potentials were associated with decreases in NM and in the fraction of N in photosynthetic proteins, whereas decreases in gm were associated with increases in MA and the fraction of cell walls. These age-dependent modifications altered the functional scaling of foliage photosynthetic potentials with MA, NM, and NA. The species primarily differed in the rate of age-dependent modifications in foliage structural and functional characteristics, but also in the degree of age-dependent changes in various variables. Stomatal openness was weakly associated with leaf age, but due to species differences in stomatal openness, the distribution of total diffusion limitation between stomata and mesophyll varied among species. These data collectively demonstrate that in Mediterranean evergreens, structural limitations of photosynthesis strongly interact with biochemical limitations. Age-dependent changes in gm and photosynthetic capacities do not occur in a co-ordinated manner in these species such that mesophyll diffusion constraints curb photosynthesis more in older than in younger leaves.  相似文献   

12.
Variation in light demand is a major factor in determining the growth and survival of trees in a forest. There is strong relation between the light‐demand and the effect of growth irradiance on leaf morphology and photosynthesis in three Acer species: A. rufinerve (light‐demanding), A. mono (intermediate) and A. palmatum (shade‐tolerant). The increase in mesophyll thickness and surface area of chloroplasts facing the intercellular airspaces (Sc) with growth irradiance was highest in A. rufinerve. Although the increase in light‐saturated photosynthesis (Amax) was similar among the species, the increase in water use efficiency (WUE) was much higher in A. rufinerve than that in the other species, indicating that the response to water limitation plays an important role in leaf photosynthetic acclimation to high light in A. rufinerve. The low CO2 partial pressure at the carboxylation site (Cc) in A. rufinerve (130 µmol mol?1) at high irradiance was caused by low stomatal and internal conductance to CO2 diffusion, which minimized the increase in Amax in A. rufinerve despite its high Rubisco content. Under shade conditions, interspecific differences in leaf features were relatively small. Thus, difference in light demand related to leaf acclimation to high light rather than that to low light in the Acer species.  相似文献   

13.
Leaf surface wetness that occurs frequently in natural environments has a significant impact on leaf photosynthesis. However, the physiological mechanisms for the photosynthetic responses to wetness are not well understood. The responses of leaf CO2 assimilation rate (A) to 72 h of artificial mist of a wettable (bean; Phaseolus vulgaris) and a non‐wettable species (pea; Pisum sativum) were compared. Stomatal and non‐stomatal limitations to A were investigated. A 28% inhibition of A was observed in the bean leaves as a result of a 16% decrease in stomatal conductance and a 55% reduction in the amount of Rubisco. The decrease of Rubisco was mainly due to its partial degradation. In contrast to the bean leaves, a 22% stimulation of A was obtained in the 72 h mist‐treated pea leaves. Mist treatment increased stomatal conductance by 12.5% and had no effect on the amount of Rubisco. These results indicated that a positive photosynthetic response to wetness occurred only in non‐wettable species and is due to the change in stomatal regulation.  相似文献   

14.
Coordination between structural and physiological traits is key to plants' responses to environmental fluctuations. In heterobaric leaves, bundle sheath extensions (BSEs) increase photosynthetic performance (light‐saturated rates of photosynthesis, Amax) and water transport capacity (leaf hydraulic conductance, Kleaf). However, it is not clear how BSEs affect these and other leaf developmental and physiological parameters in response to environmental conditions. The obscuravenosa (obv) mutation, found in many commercial tomato varieties, leads to absence of BSEs. We examined structural and physiological traits of tomato heterobaric and homobaric (obv) near‐isogenic lines grown at two different irradiance levels. Kleaf, minor vein density, and stomatal pore area index decreased with shading in heterobaric but not in homobaric leaves, which show similarly lower values in both conditions. Homobaric plants, on the other hand, showed increased Amax, leaf intercellular air spaces, and mesophyll surface area exposed to intercellular airspace (Smes) in comparison with heterobaric plants when both were grown in the shade. BSEs further affected carbon isotope discrimination, a proxy for long‐term water‐use efficiency. BSEs confer plasticity in traits related to leaf structure and function in response to irradiance levels and might act as a hub integrating leaf structure, photosynthetic function, and water supply and demand.  相似文献   

15.
The levels of stomatal, mesophyll and biochemical limitations in CO2 assimilation of ‘Bluecrop’ highbush blueberry leaves were compared at two different levels of leaf water potential. The leaf water potentials were ?1.49 and ?1.94 MPa in daily-irrigated (DI) and non-irrigated (NI) shrubs, respectively. The NI shrubs represented plants under moderate water stress. Mesophyll conductance (g m) and chloroplastic CO2 concentration (C c) were estimated by combined measurements of gas exchange and chlorophyll fluorescence under various intercellular CO2 concentrations (C i). Net CO2 assimilation rates (A n) as a function of C c were used for calculating maximum carboxylation efficiency (α cmax) at the real sites of CO2 assimilation. Maximum A n (A nmax) from the light response curves at 400 μmol mol?1 air of ambient CO2 concentration (C a) were lower in the leaves of NI shrubs than in those of DI ones. However, electron transport rates were higher in the leaves of NI shrubs than in those of DI ones. The decrease in CO2 assimilation following water stress may be caused by a decrease in g m rather than a decrease in stomatal conductance (g s) according to limitation analysis. Limitation rates by g s, calculated at 400 μmol mol?1 air of C a in A n-C i curves, were not significantly different between the leaves of DI and NI shrubs. However, limitation rates by g m from A n-C c curves were significantly higher in the leaves of NI shrubs than in those of DI ones. Maximum carboxylation efficiency (α cmax) values calculated from the A n-C c curve, contrary to those calculated from the A n-C i curve, were higher in the leaves of NI shrubs than in those of DI ones. Consequently, mesophyll limitation than stomatal and biochemical limitations mainly down-regulated the photosynthesis in the leaves of ‘Bluecrop’ blueberry shrubs during moderate water stress.  相似文献   

16.
Chloride (Cl?) has been recently described as a beneficial macronutrient, playing specific roles in promoting plant growth and water‐use efficiency (WUE). However, it is still unclear how Cl? could be beneficial, especially in comparison with nitrate (NO3?), an essential source of nitrogen that shares with Cl? similar physical and osmotic properties, as well as common transport mechanisms. In tobacco plants, macronutrient levels of Cl? specifically reduce stomatal conductance (gs) without a concomitant reduction in the net photosynthesis rate (AN). As stomata‐mediated water loss through transpiration is inherent in the need of C3 plants to capture CO2, simultaneous increase in photosynthesis and WUE is of great relevance to achieve a sustainable increase in C3 crop productivity. Our results showed that Cl?‐mediated stimulation of larger leaf cells leads to a reduction in stomatal density, which in turn reduces gs and water consumption. Conversely, Cl? improves mesophyll diffusion conductance to CO2 (gm) and photosynthetic performance due to a higher surface area of chloroplasts exposed to the intercellular airspace of mesophyll cells, possibly as a consequence of the stimulation of chloroplast biogenesis. A key finding of this study is the simultaneous improvement of AN and WUE due to macronutrient Cl? nutrition. This work identifies relevant and specific functions in which Cl? participates as a beneficial macronutrient for higher plants, uncovering a sustainable approach to improve crop yield.  相似文献   

17.
In habitats with low water availability, a fundamental challenge for plants will be to maximize photosynthetic C-gain while minimizing transpirational water-loss. This trade-off between C-gain and water-loss can in part be achieved through the coordination of leaf-level photosynthetic and hydraulic traits. To test the relationship of photosynthetic C-gain and transpirational water-loss, we grew, under common growth conditions, 18 C4 grasses adapted to habitats with different mean annual precipitation (MAP) and measured leaf-level structural and anatomical traits associated with mesophyll conductance (gm) and leaf hydraulic conductance (Kleaf). The C4 grasses adapted to lower MAP showed greater mesophyll surface area exposed to intercellular air spaces (Smes) and adaxial stomatal density (SDada) which supported greater gm. These grasses also showed greater leaf thickness and vein-to-epidermis distance, which may lead to lower Kleaf. Additionally, grasses with greater gm and lower Kleaf also showed greater photosynthetic rates (Anet) and leaf-level water-use efficiency (WUE). In summary, we identify a suite of leaf-level traits that appear important for adaptation of C4 grasses to habitats with low MAP and may be useful to identify C4 species showing greater Anet and WUE in drier conditions.  相似文献   

18.
In recent years, the effect of heat‐induced electrical signalling on plant photosynthetic activity has been demonstrated for many plant species. However, the underlying triggers of the resulting transient inhibition of photosynthesis still remain unknown. To further investigate on this phenomenon, we focused in our present study on soybean (Glycine max L.) on the direct effect of signal transmission in the leaf mesophyll on conductance for CO2 diffusion in the mesophyll (gm) and detected a drastic decline in gm following the electrical signal, whereas the photosynthetic electron transport rate (ETR) was only marginally affected. In accordance with the drop in net photosynthesis (AN), energy dispersive X‐ray analysis (EDXA) revealed a shift of K, Mg, O and P on leaf chloroplasts. Control experiments under elevated CO2 conditions proved the transient reduction of AN, ETR, the chloroplast CO2 concentration (Cc) and gm to be independent of the external CO2 regime, whereas the effect of the electrical signal on stomatal conductance for CO2 (gs) turned out much less distinctive. We therefore conclude that the effect of electrical signalling on photosynthesis in soybean is triggered by its immediate effects on gm.  相似文献   

19.
F. Yoshie  S. Yoshida 《Oecologia》1987,72(2):202-206
Summary Seasonal changes in the photosynthetic characteristics of intact involucral leaves of Anemone raddeana were investigated under laboratory conditions. Net photosynthesis and constant water vapor pressure deficit showed almost the same seasonal trend. They increased rapidly from mid-April immediately after unfolding of the leaves and reached the maximum in late-April, before the maximum expansion of the leaves. They retained the maximum values until early-May and then decreased toward late-May with a progress of leaf senescence. The calculated values of intercellular CO2 concentration and relative stomatal limitation of photosynthesis showed no significant change throughout the season. The carboxylation efficiency as assessed by the initial slope of Ci-photosynthesis curve and the net photosynthesis under a high Ci regime varied seasonally in parallel with the change of the light-saturated photosynthesis. The results indicate that the seasonal changes in light-saturated net photosynthesis are not due to a change of stomatal conductance, but to a change in the photosynthetic capacity of mesophyll. Nevertheless, leaf conductance changed concomitantly with photosynthetic capacity, indicating that the seasonal change in stomatal conductance is modulated by the mesophyll photosynthetic capacity such that the intercellular CO2 concentrations is maintained constant. The shape of light-photosynthesis curve was similar to that of sun-leaf type. The quantum yield also changed simultaneously with the photosynthetic capacity throughout the season.Contribution No. 2965 from the Institute of Low Temperature Science  相似文献   

20.
Leaf gas exchange parameters and the content of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) in the leaves of two 2‐year‐old aspen (Populus tremuloides Michx.) clones (no. 216, ozone tolerant and no. 259, ozone sensitive) were determined to estimate the relative stomatal and mesophyll limitations to photosynthesis and to determine how these limitations were altered by exposure to elevated CO2 and/or O3. The plants were exposed either to ambient air (control), elevated CO2 (560 p.p.m.) elevated O3 (55 p.p.b.) or a mixture of elevated CO2 and O3 in a free air CO2 enrichment (FACE) facility located near Rhinelander, Wisconsin, USA. Light‐saturated photosynthesis and stomatal conductance were measured in all leaves of the current terminal and of two lateral branches (one from the upper and one from the lower canopy) to detect possible age‐related variation in relative stomatal limitation (leaf age is described as a function of leaf plastochron index). Photosynthesis was increased by elevated CO2 and decreased by O3 at both control and elevated CO2. The relative stomatal limitation to photosynthesis (ls) was in both clones about 10% under control and elevated O3. Exposure to elevated CO2 + O3 in both clones and to elevated CO2 in clone 259, decreased ls even further – to about 5%. The corresponding changes in Rubisco content and the stability of Ci/Ca ratio suggest that the changes in photosynthesis in response to elevated CO2 and O3 were primarily triggered by altered mesophyll processes in the two aspen clones of contrasting O3 tolerance. The changes in stomatal conductance seem to be a secondary response, maintaining stable Ci under the given treatment, that indicates close coupling between stomatal and mesophyll processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号