首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two distinct pathways have been elucidated which lead to the formation of an AUG-dependent initiation complex. One pathway involves the use of initiation factor M1 (IF-M1) to promote AUG-dependent binding of the initiator tRNA to the 40 S subunit, followed by joining of the 60 S subunit in the presence of IF-M2A, IF-M2B, and GTP. The second pathway involves the IF-MP-directed binding of initiator tRNA to the 40 S subunit via a ternary complex of IF-MP-GTP-Met-tRNAf. This reaction does not require AUG codon. However, subsequent formation of an 80 S initiation complex (as determined by methionyl-puromycin synthesis) required AUG as well as IF-M2A, IF-M2B, and GTP. Since both pathways require the same complementary initiation factors (at the same level), it would appear that the only difference is the manner in which the initiator tRNA is bound to the 40 S subunit, either by IF-M1 or IF-MP. Examination of the requirements for endogenous mRNA-directed methionyl-puromycin synthesis indicates a greater difference between IF-MP and IF-M1 in that only IF-MP was capable of forming an 80 S initiation complex which was sensitive to puromycin.  相似文献   

2.
Resistance of bacterial protein synthesis to double-stranded RNA   总被引:1,自引:0,他引:1  
Double-stranded RNA fails to inhibit the formation of translation initiation complexes on R17 bacteriophage RNA, overall synthesis of R17 proteins, or the ability of bacterial initiation factor IF-3 to prevent the association of 30S and 50S ribosomal subunits into single ribosomes. Yet, IF-3 can form complexes with double-stranded RNA. However, IF-3 binds to double-stranded RNA with lower apparent affinity than to either R17 RNA or 30S ribosomal subunits; this may explain the resistance of bacterial protein synthesis to double-stranded RNA.  相似文献   

3.
Two amphipathic protein fractions soluble in organic solvents as well as in water have been isolated from the ganglioside fraction of bovine erythrocyte membranes by successive chromatography in chloroform-methanol mixture on DEAE-Sephadex, silicic acid, and α-hydroxypropylated Sephadex G50 (LH60) columns. These two fractions contained a similar low molecular weight protein but with distinctively different amino acid composition. One of these proteins has been characterized by having a strong Paul-Bunnell antigen activity and had a binding affinity to ganglioside. A similar protein without Paul-Bunnell antigen activity was isolated as the major ganglioside-associated protein.  相似文献   

4.
Polysialogangliosides but not monosialoganlioside or a neutral glycosphingolipid induce release of [3H] -dopamine from synaptosomes in presence of Ca++, presumably by exocytosis. This effect is discussed in relation to the ability of polysialogangliosides to induce membrane fusion in chicken erythrocytes and to their behaviour in lipid monolayers. It is suggested that characteristic interactions with phosphatidylcholine involving decreases of surface potential are participating in the polysialoganglioside-induced neurotransmitter release.  相似文献   

5.
Treatment of L-cells with hydroxyurea markedly inhibits the incorporation of [3H]thymidine into DNA. The 3H incorporation that persists during hydroxyurea inhibition is largely into 7S DNA chains. The labelled fragments can be chased into higher MW DNA, suggesting that they are intermediates in the replication process. This interpretation concurs with that of earlier reports which describe a similar effect of hydroxyurea on the replication of viral DNA.  相似文献   

6.
Responding to viral infection, the interferon-induced, double-stranded RNA (dsRNA)–activated protein kinase PKR phosphorylates translation initiation factor eIF2α to inhibit cellular and viral protein synthesis. To overcome this host defense mechanism, many poxviruses express the protein E3L, containing an N-terminal Z-DNA binding (Zα) domain and a C-terminal dsRNA-binding domain (dsRBD). While E3L is thought to inhibit PKR activation by sequestering dsRNA activators and by directly binding the kinase, the role of the Zα domain in PKR inhibition remains unclear. Here, we show that the E3L Zα domain is required to suppress the growth-inhibitory properties associated with expression of human PKR in yeast, to inhibit PKR kinase activity in vitro, and to reverse the inhibitory effects of PKR on reporter gene expression in mammalian cells treated with dsRNA. Whereas previous studies revealed that the Z-DNA binding activity of E3L is critical for viral pathogenesis, we identified point mutations in E3L that functionally uncouple Z-DNA binding and PKR inhibition. Thus, our studies reveal a molecular distinction between the nucleic acid binding and PKR inhibitory functions of the E3L Zα domain, and they support the notion that E3L contributes to viral pathogenesis by targeting PKR and other components of the cellular anti-viral defense pathway.  相似文献   

7.
Low-molecular-weight RNA (4S to > 5.5S) isolated from nuclear ribonucleo-protein particles of adenovirus-infected HeLa cells inhibited cell-free protein synthesis directed by polyribosomal RNA from rabbit reticulocytes by more than 80%. In a reconstituted system inhibitory RNA did not prevent the binding of Met-tRNAf-GTP-IF ternary complex to 40S subunits; however, it repressed the formation of 80S from 40S-mRNA complex and 60S subunits. In binding assays in which authentic IF-M2A and IF-M2B were present, the inhibitor competed with messenger molecules for binding site(s) in IF-M2B. The inhibitory RNA appears to be a 5.5S RNA.  相似文献   

8.
9.
The human p68 kinase is an interferon-regulated enzyme that inhibits protein synthesis when activated by double-stranded RNA. We show here that when expressed in Saccharomyces cerevisiae, the p68 kinase produced a growth suppressing phenotype resulting from an inhibition of polypeptide chain initiation consistent with functional protein kinase activity. This slow growth phenotype was reverted in yeast by two different mechanisms: expression of the p68 kinase N-terminus, shown to bind double-stranded RNA in vitro and expression of a mutant form of the alpha-subunit of yeast initiation factor 2, altered at a single phosphorylatable site. These results provide the first direct in vivo evidence that the p68 kinase interacts with the alpha-subunit of eukaryotic initiation factor 2. Sequence similarity with a yeast translational regulator, GCN2, further suggests that this enzyme may be a functional homolog in higher eukaryotes, where its normal function is to regulate protein synthesis through initiation factor 2 phosphorylation.  相似文献   

10.
11.
We partially purified an inhibitor from poliovirus-infected HeLa cells which specifically blocked phosphorylation of the alpha subunit of eucaryotic initiation factor 2 by the double-stranded RNA-activated protein kinase. The inhibitory activity eluted from a sizing column with an approximate molecular weight of 80,000 to 100,000 and was sensitive to heat, suggesting a protein nature for the inhibitor. No specific virus-encoded protein purified with the inhibitor. The inhibition of phosphorylation of the alpha subunit of eucaryotic initiation factor 2 was not due to a protein phosphatase associated with the inhibitor. The inhibitor did not seem to prevent phosphorylation of the double-stranded RNA-activated protein kinase but inhibited the phosphorylation of the alpha subunit of eucaryotic initiation factor 2 by the activated kinase. Double-stranded RNA-induced inhibition of in vitro protein synthesis in reticulocyte lysates could be prevented by the addition of the partially purified inhibitor during preincubation of lysate with double-stranded RNA.  相似文献   

12.
The interferon-induced protein kinase PK-i from mouse L cells.   总被引:8,自引:0,他引:8  
Interferon-treated L cells are characterized by an increased protein kinase activity that can selectively phosphorylate the small subunit of eukaryotic initiation factor 2. This protein kinase, PK-i, has been extensively purified and shown to be a potent inhibitor of mRNA translation. The purified PK-i contains the endogenously phosphorylated 67,000 Mr protein characteristic of interferon-treated cell extracts. PK-i can also phosphorylate arginine-rich histones. Purified PK-i can be activated by preincubation with ATP (but not adenylyl imidodiphosphate) and low concentrations of double-stranded RNA. The activation results in an increase in the first rate of eIF-2 phosphorylation. Activated PK-i becomes resistant to high concentrations of double-stranded RNA and more thermostable. A stimulator of PK-i activity, factor A, was isolated, as well as a specific phosphoprotein phosphatase that dephosphorylates the 67,000 Mr protein and eIF-2. These two factors, which are present in untreated L cells, may regulate the translation inhibitory activity of the interferon-induced and double-stranded RNA-activated protein kinase PK-i.  相似文献   

13.
The mechanism of interference with R17 viral RNA expression by a host protein, factor i, was studied. Formation of initiation complexes on native bacteriophage R17 RNA molecules, as well as translation of R17 RNA in vitro, is blocked almost quantitatively by factor i. This inhibition is readily overcome by the addition of excess R17 RNA. Extensive complex formation between factor i and R17 RNA occurs during inhibition of initiation complex formation. Moreover, the extent of inhibition of R17 RNA translation correlates closely with the extent of complex formation between factor i and R17 RNA, and exhibits the same sigmoid concentration dependence on factor i.Although initiation complex formation is totally dependent upon initiation factor IF-3, neither this function of IF-3, nor its ability to prevent the association of 30 S and 50 S ribosomal subunits into single ribosomes, is affected by factor i. IF-3, even when present in tenfold molar excess over factor i, fails to relieve the inhibition of initiation on R17 RNA.It is concluded that factor i is a translational represser acting directly on messenger RNA. It is suggested that this repression is cistron-specific, affecting only viral coat protein synthesis. Messenger RNA discrimination by factor i does not involve initiation factor IF-3.  相似文献   

14.
15.
We describe the detection of a complex between met tRNAF and native 40S ribosomal subunits in the crude reticulocyte lysate which synthesises globin at a rate close to that of the intact cells. We show that double-stranded RNA, a highly specific and powerful inhibitor of initiation in this system, causes the complex to disappear. This not only casts light on the mechanism of action of double-stranded RNA as an inhibitor of protein synthesis, but also suggests that the complex between 40S subunits and met tRNAF, which other authors have noted using highly fractionated systems, does indeed play an integral role in the initiation of protein synthesis in eukaryotic cells.  相似文献   

16.
Viruses have evolved a variety of mechanisms to usurp the host cell translation machinery to enable translation of the viral genome in the presence of high levels of cellular mRNAs. Noroviruses, a major cause of gastroenteritis in man, have evolved a mechanism that relies on the interaction of translation initiation factors with the virus-encoded VPg protein covalently linked to the 5′ end of the viral RNA. To further characterize this novel mechanism of translation initiation, we have used proteomics to identify the components of the norovirus translation initiation factor complex. This approach revealed that VPg binds directly to the eIF4F complex, with a high affinity interaction occurring between VPg and eIF4G. Mutational analyses indicated that the C-terminal region of VPg is important for the VPg-eIF4G interaction; viruses with mutations that alter or disrupt this interaction are debilitated or non-viable. Our results shed new light on the unusual mechanisms of protein-directed translation initiation.  相似文献   

17.
Globoside added to culture medium was taken up by NIL cells and accumulated as a component of plasma membrane. This was evidenced by the recovery of 3H-labelled globoside from plasma membrane fractions and by the higher chemical quantity of globoside found in NIL cells cultured in medium containing globoside. Concomitantly the following changes in growth behavior were manifested: a reduction in growth rate due to an extended prereplicative phase and a reduced saturation density which may result from changed adhesive properties of cells.  相似文献   

18.
We have identified a novel human karyopherin (Kap) beta family member that is related to human Crm1 and the Saccharomyces cerevisiae protein, Msn5p/Kap142p. Like other known transport receptors, this Kap binds specifically to RanGTP, interacts with nucleoporins, and shuttles between the nuclear and cytoplasmic compartments. We report that interleukin enhancer binding factor (ILF)3, a double-stranded RNA binding protein, associates with this Kap in a RanGTP-dependent manner and that its double-stranded RNA binding domain (dsRBD) is the limiting sequence required for this interaction. Importantly, the Kap interacts with dsRBDs found in several other proteins and binding is blocked by double-stranded RNA. We find that the dsRBD of ILF3 functions as a novel nuclear export sequence (NES) in intact cells, and its ability to serve as an NES is dependent on the expression of the Kap. In digitonin-permeabilized cells, the Kap but not Crm1 stimulated nuclear export of ILF3. Based on the ability of this Kap to mediate the export of dsRNA binding proteins, we named the protein exportin-5. We propose that exportin-5 is not an RNA export factor but instead participates in the regulated translocation of dsRBD proteins to the cytoplasm where they interact with target mRNAs.  相似文献   

19.
Protein synthesis was inhibited in one line of interferon-treated HeLa cells (line 2) upon infection with reovirus, but not in different HeLa cells (line 1) treated in the same way. The inhibition resulted in polysome runoff, suggesting that it was due to an impairment of peptide chain initiation. Interferon induces the synthesis of a protein kinase, which is activated in cell-free systems by double-stranded RNA and phosphorylates the alpha subunit of eukaryotic initiation factor 2, thus inhibiting the initiation of protein synthesis. Therefore, we measured the level of this protein kinase in extracts prepared from the two HeLa cell lines. Cells of line 2 showed about 3-4 times more protein kinase activity than cells of line 1. The inhibition of protein synthesis upon infection with reovirus was correlated with an increased phosphorylation of the alpha subunit of eukaryotic initiation factor 2 in interferon-treated cells labeled with 32P. The kinase was presumably activated in intact cells by viral double-stranded RNA, but this activation resulted in inhibition of protein synthesis only in cells with elevated levels of the kinase.  相似文献   

20.
Eukaryotic initiation factor 4E (eIF4E), a fundamental effector and rate limiting element of protein synthesis, binds the 7-methylguanosine cap at the 5′ end of eukaryotic messenger RNA (mRNA) specifically as a constituent of eIF4F translation initiation complex thus facilitating the recruitment of mRNA to the ribosomes. This review focusses on the engagement of signals contributing to growth factor originated maxim and their role in the activation of eIF4E to achieve a collective influence on cellular growth, with a key focus on conjuring vital processes like protein synthesis. The review invites considerable interest in elevating the appeal of eIF4E beyond its role in regulating translation viz a viz cancer genesis, attributed to its phosphorylation state that improves the prospect for the growth of the cancerous cell. This review highlights the latest studies that have envisioned to target these pathways and ultimately the translational machinery for therapeutic intervention. The review also brings forward the prospect of eIF4E to act as a converging juncture for signaling pathways like mTOR/PI3K and Mnk/MAPK to promote tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号