首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation (affinity) constants for 1:1 complexes of N-(2-acetamido)iminodiacetic acid (ADAH2) with Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) have been determined. Probable structures of the various metal chelates existing in solution are discussed. Values for the deprotonation of the amide group in [Cu(ADA)] and subsequent hydroxo complex formation are also reported. The use of ADA as a buffer is considered in terms of metal buffers complexes which can be formed at physiological pH, i.e., at pH 7.0 there is essentially no free metal ion in 1:1 M2+ to ADA solutions.  相似文献   

2.
N-(2-Pyridyl)acetamide (aapH) complexes of palladium(II), cobalt(II), nickel(II), and copper(II) have been studied by means of magnetic susceptibilities, and infrared, electronic, and PMR spectra. In the octahedral complexes M(aapH)2X2(M = Co, Ni, Cu; X = Cl, Br, NCS, NO3), bidentate aapH is chelated through the pyridine-N and amid-O atomes, whereas in the square-planar Pd(aapH)2X2 (X = Cl, Br) unidentate aapH is coordinated through the pyridine-N atom alone. Under alkaline conditions aapH is deprotonated in the presence of palladium(II) to form Pd(aap)2·4H2O, aap being an anionic bidentate ligand and chelating through the pyridine-N and amide-O atoms.  相似文献   

3.
Interaction between l-arabinose and the zinc group metal-ion salts has been studied in aqueous solution and solid complexes of the type M(l-arabinose)X2·nH2O, where M = Zn(II), Cd(II), and Hg(II) ions, X = Cl or Br, and n = 0–2 have been isolated and characterized. On comparison with the structurally known Ca(l-arabinose) Cl2·4H2O and the corresponding magnesium compounds, it is concluded that the Zn(II) and Cd(II) ions are six-coordinated, binding to two arabinose moieties via 03, 04 of the first and 01, 05 of the second sugar molecule as well as to two H2O molecules. The Hg(II) ion binds only to two sugar molecules in a similar fashion to zinc and cadmium ions, resulting in a four coordination around the mercury ion. The strong intermolecular hydrogen bonding network of the free arabinose is rearranged to that of the sugar OH...H2O...halide system upon metalation. The β-anomer sugar conformation is predominant in the free sugar, while the α-anomer conformation is preferred by the alkaline earth and Zn(II), Cd(II), and Hg(II) cations.  相似文献   

4.
New 2-aminoethyl pendant-armed Schiff base macrocyclic complexes, [ML7]2+ (M = Mn(II), Mg(II), Zn(II) and Cd(II)), have been prepared via M(II) templated [1 + 1] cyclocondensation of 2,6-diacetylpyridine with a new branched hexamine, N,N,N′,N′-tetrakis(2-aminoethyl)-2,2-dimethylpropane-1,3-diamine. The ligand is a 16-membered pentaaza macrocycle having two 2-aminoethyl pendant arms [L7 is 2,14-dimethyl-6,10-bis(2-aminoethyl)-3,6,10,13,19-pentaazabicyclo[13.3.1]8,8-dimethylnonadeca-1(19),2,13,15,17-pentaene]. The crystal structures of [MnL7]2+ and [MgL7]2+ were determined from X-ray diffraction data. The geometry of the coordination sphere of complexes is a slightly distorted pentagonal bipyramid with the metal ion located within a pentaaza macrocycle and two pendant amines coordinating on opposite sides. All complexes were characterized by IR, microanalysis and except of [MnL7]2+ by 1H NMR, 13C NMR, DEPT135, COSY(H, H) and HMQC spectroscopy. The data indicate that the structure is pentagonal bipyramidal in each case. The structure of all complexes has also been theoretically studied by ab initio Hartree-Fock and density functional theory methods.  相似文献   

5.
Antibacterial Schiff bases derived from 1,2,4-triazoles as well as their metal complexes incorporating cobalt(II), nickel(II), copper(II) and zinc(II) have been synthesized and characterized. Physico-chemical studies suggest that an octahedral geometry for the cobalt(II), nickel(II) and zinc(II)and square-planer geometry for the copper(II) complexes. These complexes have been screened for antibacterial activity against three Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis and Bacillus subtilis) and two Gram-negative (Salmonella typhi and Pseudomonas aeruginosa) bacterial strains, and results compared with the activity of the free ligands. The metal complexes were found to be more potent against one or more bacterial strains than the free ligands.  相似文献   

6.
Interaction between D-glucuronic acid and Zn(II), Cd(II), and Hg(II) metal ion salts has been studied in solution and solid complexes of the type M(D-glucuronate)X · nH2O and M(D-glucuronate)2·nH2O, where M = Zn(II), Cd(II), and Hg(II), X = Cl or Br, and n = 0–2 were isolated and characterized. Spectroscopic and other evidence indicated that in the metal-halide-sugar complexes the Zn(II) and Cd(II) ions bind to two D-glucuronate moieties via 06, 05 of the carboxyl oxygen atoms of the first and 04, 06' of hydroxyl and carbonyl groups of the second as well as to two H2O molecules, whereas in the corresponding M(D-glucuronate)2 · nH2O salts, the metal ions are bonded to two sugar anions through 06 and 06' of the ionized carboxyl groups and two water molecules, resulting in a six-coordination around each metal cation. The Hg(II) ion binds to 06 and 05 oxygen atoms of a sugar anion and to a halide anion or water molecule, in the Hg(D-glucuronate)X·nH2O compounds, while in the corresponding metal-glucuronate salt mercury is bonded to 06 and 06' of the two glucuronate anions with four-coordination around the Hg(II) ion. The β-anomer sugar conformation is predominant in the free acid and in these series of metal-sugar complexes.  相似文献   

7.
Combined pH-metric, UV-Vis, 1H NMR and EPR spectral investigations on the complex formation of M(II) ions (M=Co, Ni, Cu and Zn) with N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter H2L) in aqueous solution at a fixed ionic strength, I=10−1 mol dm−3, at 25 ± 1 °C indicate the formation of M(L), M(H−1L) and M2(H−1L)+ complexes. Proton-ligand and metal-ligand constants and the complex formation equilibria have been elucidated. Solid complexes, [M(L)(H2O)2] · nH2O (n=1 for M = Co and Zn, n=2 for M = Ni) and {Cu (μ-L) · 4H2O}n, have been isolated and characterized by elemental analysis, spectral, conductance and magnetic measurements and thermal studies. Structures of [Ni(L)(H2O)2] · 2H2O and {Cu(μ-L) · 4H2O}n have been determined by single crystal X-ray diffraction. The nickel(II) complex exists in a distorted octahedral environment in which the metal ion is coordinated by the two carboxylate O atoms, the amino-N atom of the iminodiacetate moiety and the pyridine type N-atom of the benzimidazole moiety. Two aqua O atoms function as fifth and sixth donor atoms. The copper(II) complex is made up of interpenetrating polymeric chains of antiferromagnetically coupled Cu(II) ions linked by carboxylato bridges in syn-anti (apical-equatorial) bonding mode and stabilized via interchain hydrogen bonds and π-π stacking interactions.  相似文献   

8.
9.
The acid-base and coordination properties towards Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) of four polyamino-phenol macrocycles 15-hydroxy-3,6,9-triazabicyclo[9.3.1]pentadeca-11,13,115-triene L1, 18-hydroxy-3,6,9,12-tetraazabicyclo[12.3.1]octadeca-14,16,118-triene L2, 21-hydroxy-3,6,9,12,15-pentaazabicyclo[15.3.1]enaicosa-17,19,121-triene L3 and 24-hydroxy-3,6,9,12,15,18-hexaazabicyclo[18.3.1]tetraicosa-20,22,124-triene L4 are reported. The protonation and stability constants were determined by means of potentiometric measurements in 0.15 mol dm−3 NMe4Cl aqueous solution at 298.1 K. L1 forms highly unsaturated Co(II), Cu(II), Zn(II) and Cd(II) mononuclear complexes that are prone to give dimeric dinuclear species with [(MH−1L1)2]2+ stoichiometry, in solution. L2 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes that can coordinate external species as OH anion, giving hydroxylated complexes at alkaline pH. L3 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes and Co(II), Ni(II), Cu(II) and Zn(II) dinuclear [M2H−1L3]3+ species. L4 forms stable mono- and dinuclear Co(II), Cu(II), Zn(II) and Cd(II) complexes, but only mononuclear species with Pb(II). The effect of macrocyclic size is considered in the discussion of results.  相似文献   

10.
Reaction of the potent hydroxamate-based histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), with hydrated metal salts of Fe(III), Cu(II), Ni(II) and Zn(II) yielded a tris-hydroxamato complex in the case of Fe(III) and bis-hydroxamato complexes in the case of Cu(II), Ni(II) and Zn(II) both in the solid state and in solution. Reaction of the secondary hydroxamic acid, N-Me-SAHA, also yielded a tris-hydroxamato complex in the case of Fe(III) and bis-hydroxamato complexes in the case of Cu(II), Ni(II) and Zn(II) in solution. These metal complexes have the hydroxamato moiety coordinated in an O,O’-bidentate fashion. Stability constants of the metal complexes formed with SAHA and N-Me-SAHA in a DMSO/H2O 70/30%(v/v) mixture are described. A novel crystal structure of SAHA together with a novel synthesis for N-Me-SAHA are also reported.  相似文献   

11.
Complexes of formula M(2,5-DHB)24H2O (M = Mn, Co, Ni, Zn, Cu and Cd; 2,5-DHB = 2,5-dihydroxybenzoate) were prepared and characterized by means of infrared and electronic spectroscopy, and by electron spin resonance. For the Zn complex the crystal and molecular structure was also determined by single-crystal X-ray diffraction analysis. The crystal is orthorhombic, space group Pbca (No. 61), with a = 18.503(4), b = 13.536(3), c = 6.900(2) Å, and Z = 4. The final refinement used 877 reflections and gave a residual R value of 0.041. The complex has slightly compressed octahedral coordination, with the zinc atom bound to two monodentate carboxylate groups lying in trans positions and four water molecules. X-ray data and infrared spectra show the Mn, Co, Ni, Zn and Cd complexes to be isostructural with the Zn compound. The electronic, infrared and ESR spectra of the copper(II) complex are consistent with a CuO4? based chromophore involving two water molecules and two monodentate carboxylate groups in the metal plane, and long axial contacts.  相似文献   

12.
Herein, we evaluate the binding of Pb(II) and Bi(III) to cysteine-substituted versions of the TRI peptides [AcG-(LKALEEK)4G-NH2] which have previously been shown to bind Hg(II) and Cd(II) in unusual geometries as compared with small-molecule thiol ligands in aqueous solutions. Studies of Pb(II) and Bi(III) with the peptides give rise to complexes consistent with the metal ions bound to three sulfur atoms with M–S distances of 2.63 and 2.54 Å, respectively. Competition experiments between the metal ions Pb(II), Cd(II), Hg(II) and Bi(III) for the peptides show that Hg(II) has the highest affinity, owing to the initial formation of the extremely strong HgS2 bond. Cd(II) and Pb(II) have comparable binding affinities at pH > 8, while Bi(III) displays the weakest affinity, following the model, M(II) + (TRI LXC)3 3? → M(II)(TRI LXC)3 ?. While the relevant equilibria for Hg(II) binding to the TRI peptides corresponds to a strong first step forming Hg(TRI LXC)2(HTRI LXC), followed by a single deprotonation to give Hg(TRI LXC)3 ?, the binding of Cd(II) and Pb(II) is consistent with initial formation of M(II)(TRI LXC)(HTRI LXC)2 + at pH < 5 followed by a two-proton dissociation step (pK a2) yielding M(II)(TRI LXC)3 ?. Pb(II)(TRI LXC)(HTRI LXC)2 + converts to Pb(II)(TRI LXC)3 ? at slightly lower pH values than the corresponding Cd(II)–peptide complexes. In addition, Pb(II) displays a lower pK a of binding to the “d”-substituted peptide, (TRI L12C, pK a2 = 12.0) compared with the “a”-substituted peptide, (TRI L16C, pK a2 = 12.6), the reverse of the order seen for Hg(II) and Cd(II). Pb(II) also showed a stronger binding affinity for TRI L12C (K bind = 3.2 × 107 M?1) compared with that with TRI L16C (K bind = 1.2 × 107 M?1) at pH > 8.  相似文献   

13.
The open-chain, potentially, pentadentate, ligan 1,11-bis(dimethylamino)-3,6,9-trimethyl-3,6,9,-triazaundecane (Me7tetren) forms a series of metal complexes having the general formula [M(Me7tetren)]Y2 (Y = 1, M = Co, Ni; Y = ClO4, M = Co, Ni, Cu, Zn). On the basis of their physical properties, it is suggested that all these compounds contains isostructural five-coordinate [M(Me7tetren)]2+ cations, the ligand acting as pentadentate. These complexes react in solution with thiocyanate ion to give mono- and, with exception of copper(II), di-thiocyanato five- and six-co-ordinate derivatives. Mono-thiocyanato derivatives of cobalt(II), nickel(II) and zinc(II) have been isolated as tetraphenylborate salts. Cobalt(II) and nickel (II) di-thiocyanato derivatives have been also isolated. Results are discussed in terms of the steric requirements of the ligand and electronic properties of the metal ions.  相似文献   

14.
A 13C NMR in DMSO-d6 as solvent, diffuse reflectance spectra and X-ray powder diagram study of the inclusion of vitamin D in β-cyclodextrin and of the ternary assemblies with β-cyclodextrin, vitamin D and metal ions (e.g. Co(II), Cu(II) and Zn(II)) was carried out to determine the structure of these associations in which the molecular ratios (β-cyclodextrin:vitamin D:metal ions) were 5:1:1 or 10:1:1.  相似文献   

15.
Fused hexaphyrins have many physical and chemical properties and can coordinate transition metal ions. In this study, we investigated the geometric structure, charge decomposition analysis (CDA), spin density, frontier molecular orbital (FMO) compositions and absorption spectra of four oxygen doubly N-confused hexaphyrin (1.1.1.1.1.1) (ONCP) complexes with the metal ions Co(II), Ni(II), Cu(II) and Zn(II) (designated ONCP-d-Co, ONCP-d-Ni, ONCP-d-Cu and ONCP-d-Zn). Based on their energies, geometric structures, FMO characteristics and comparison to experiments, ONCP-d-Co and ONCP-d-Cu have the mix-states of the triplet state and broken-symmetry state (antiferromagnetic state) rather than the spin singlet of a closed shell as previously reported. Moreover, based on analyses of the spin density and spin population of the spin triplet ONCP-d-Co and ONCP-d-Cu complexes, the charge transfer in ONCP-d-Cu is greater than that in ONCP-d-Co because the spin density in ONCP-d-Cu is concentrated not only on the Cu ion but also on the ONCP ligand. Thus, the CDA value for ONCP-d-Cu is larger. Finally, through comparative analysis of the FMO compositions and absorption spectra, the complexes and ligand are shown to have very similar absorption spectra with characteristics that arise mainly from π?→?π* transitions both in the B-band and the Q-band, which is due to the FMO compositions being dominated by the highly delocalized conjugated system, rather than by the metal ions. The absorption maxima of the Q-band are ONCP-d-Co (1020 nm)?>?ONCP-d-Zn (1012 nm)?>?ONCP-d-Ni (997 nm)?>?ONCP-d-Cu (988 nm), which is inversely proportional to the energy gap in their FMOs.
Graphical Abstract The present work investigates the geometric structure, charge decomposition analysis (CDA), spin density, frontier molecular orbital (FMO) compositions and absorption spectra of four oxygen doubly N-confused hexaphyrin (1.1.1.1.1.1) (ONCP) complexes with the metal ions Co(II), Ni(II), Cu(II) and Zn(II) (designated ONCP-d-Co, ONCP-d-Ni, ONCP-d-Cu and ONCP-d-Zn). Based on their energies, geometric structures, FMO characteristics and comparison to experiments, ONCP-d-Co and ONCP-d-Cu have the mix-state of the triplet state and broken-symmetry state (antiferromagnetic state) rather than the spin singlet of a close shell as were previously reported. Meanwhile, ONCP-d-Ni and ONCP-d-Zn show spin singlet structure. The calculated CDA shows the following order: ONCP-d-Cu (1.487)?>?ONCP-d-Ni (1.255)?>?ONCP-d-Co (1.211)?>?ONCP-d-Zn (1.201). Through comparisons of spin density and spin populations of ONCP-d-Co and ONCP-d-Cu, charge transfer between Cu and ligand ONCP is greater than that of Co and ONCP, which makes the CDA value of ONCP-d-Cu obviously larger than that of the other complexes
  相似文献   

16.
C10H26N10ONiZn, tris(1,2-diaminoethane) zinc(II) tetrakis(cyano)niccolate(II) monohydrate (I), orthorhombic, Pbca, a = 1.1680(4), b = 1.5844(3), c = 1.9981(6) nm, Z = 8 d(meas) = 1.54, d(calc) = 1.53 g cm?3. C10H24N10NiZn, tris(1,2-diaminoethane) zinc(II) terakis(cyano)niccolate(II), (II), monoclinic, P21/n, a = 0.7957(2), b = 1.5170(5), c = 1.4932(4) nm, β = 96.41(2)°, Z = 4, d(meas) = 1.49, d(calc) = 1.51 g cm?3. Both the structures (I) and (II) have been solved by the heavy atom method and refined by full-matrix least-squares to R(I) = 0.086 for 1890 independent reflections and R(II) = 0.058 for 1689 independent reflections, respectively. In the case of (II) the superlattice structure problem was solved. The crystal structure of (I) consists of [Zn(en)3]2+ cations, [Ni(CN)4]2? anions and water molecules. Two of the cyano groups in trans positions are bonded to water molecules by hydrogen bonds, the distances CN?O being 0.289 and 0.291 nm, respectively. The crystal structure of (II) is constituted by [Zn(en)3]2+ cations and [Ni(CN)4]2? anions.  相似文献   

17.
The xylem exudates of soybean (Glycine max cv Williams), provided with fixed N, were characterized as to their organic constituents and in vivo and in vitro complexation of plutonium, iron, cadmium, and nickel. Ion exchange fractionation of whole exudates into their compound classes (organic acid, neutral, amino acid, and polyphosphate), followed by thinlayer electrophoresis, permitted evaluation of the types of ligands which stabilize each element. The polyvalent elements plutonium(IV) and iron(III) are found primarily as organic acid complexes, while the divalent elements nickel(II) and cadmium(II) are associated primarily with components of the amino acid/peptide fraction. For plutonium and cadmium, it was not possible to fully duplicate complexes formed in vivo by back reaction with whole exudates or individual class fractions, indicating the possible importance of plant induction processes, reaction kinetics, and/or the formation of mixed ligand complexes. The number and distribution of specific iron- and nickel-containing complexes varies with plant age and appears to be related to the relative concentration of organic acids and amino acids/peptides being produced and transported in the xylem as the plant matures.  相似文献   

18.
《Inorganica chimica acta》1986,119(2):111-119
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 20,21,22-Docosahydrodibenzo[b,i] [1,4,8,11] tetraazacyclotetradecine was prepared by hydrogenation of the benzo-analogue. Five isomers are feasible as a result of this hydrogenation but only two have been isolated: isomer A (melting point 158.5– 161.0 °C) and isomer B (melting point 194.5– 196.0 °C). The 13C NMR study was initiated to clear up the conformational differences between isomers. The cobalt(III), nickel(II), copper(II) and zinc(II) complexes of isomers A and B were prepared and investigated by near-ultraviolet, visible, infrared, NMR and ESR measurements. The ligand-field band in the 15 000-30 000 cm−1 region for the cobalt(III), nickel(II) and copper(II) complexes provided information on their geometry around the central metal atom. That is to say, the cobalt(III) complexes are subjected to the octahedral ligand-field with axial elongation. The copper(II) complexes and the nickel- (II) complex of isomer A are subjected to the square- planar ligand-field in these complexes. The ligand- field bands for the nickel(II)complex of isomer B display the square-planar-distorted octahedral equilibrium in the coordinating solvent. ESR measurements for the copper(II) complexes also presented the spin Hamiltonian parameters in accord with the square- planar coordination. A strong band appearing at ca. 3200 cm−1 was assigned to the N-H stretching mode and this band was slightly shifted to lower frequency upon metal coordination. The vibrational spectra and the conductance data provided evidences for the formation of the complexes with perchlorate ion as the counter ion. 13C NMR suggest that the complexes of isomer A are the cis-syn-cis form and the complexes of isomer B are the cis-anti-cis form.  相似文献   

19.
Recently, a series of Fe(II) complexes have been published by our group with 3 N-donor 1,3-bis(2′-Ar-imino)isoindoline ligands containing various Ar-groups (pyridyl, 4-methylpyridyl, thiazolyl, benzimidazolyl and N-methylbenzimidazolyl). The superoxide scavenging activity of the compounds showed correlation with the Fe(III)/Fe(II) redox potentials. Analogous, electroneutral chelate complexes with Mn(II) and Ni(II) in 2:1 ligand:metal composition are reported here. Each Mn(II) complex exhibits one reversible redox wave that is assigned as the Mn(III)/Mn(II) redox transition. The E1/2 spans a 180 mV range from − 98 (Ar = 3-methylpyridyl) to 82 mV (Ar = thiazolyl) vs. the Fc+/Fc depending on the Ar-sidearm. The SOD-like (SOD=superoxide dismutase)activity of all complexes was determined according to the McCord-Fridovich method. The Mn(II) isoindolinates have IC50 values - determined with 50 μM cytochrome c Fe(III) - that range from (3.22 ± 0.39) × 10− 6 (Ar = benzimidazolyl) to (10.80 ± 0.54) × 10− 6 M (Ar = N-methylbenzimidazolyl). In contrast with the Fe(II) complexes, the IC50 concentrations show no significant dependence on the E1/2 values in this narrow potential range emphasizing that the redox potential is not the governing factor in the Mn(II)-containing scavengers. The analogous Ni(II) compounds show no redox transitions in the thermodynamically relevant potential range (− 0.40 to 0.65 V vs. SCE) and accordingly, their superoxide scavenging activity (if any) is below the detection level.  相似文献   

20.
Methanesulfonicacid hydrazide (a sulfonamide compound, msh: CH3SO2NHNH2) derivatives: methylsalicylaldehydemethanesulfonylhydrazone (5msalmsh), 5-methyl-2-hydroxyaceto-phenonemethanesulfonylhydrazone (5mafmsh) and their Ni(II), Co(II) complexes have been synthesized for the first time. The structure of these sulfonamide compounds has been investigated by using elemental analyses; FT-IR, 1H NMR, 13C NMR, LC-MS, and UV-Vis spectrometric methods; magnetic susceptibility; conductivity measurements; thermal studies. The crystal structure of 5msalmsh has been investigated by X-ray analysis. The antibacterial activities of synthesized compounds were studied against gram positive bacteria: Staphylococcus aureus, Bacillus subtilis, and Bacillus magaterium; and gram negative bacteria: Salmonella enteritidis, and Escherichia coli by using the microdilution broth method. The biological activity screening showed that ligands have more activity than complexes against the tested bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号