首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Inorganica chimica acta》1986,112(2):153-157
New complexes of the type cis-[MX2(PP′)] (M= Ni, Pd and Pt; X=Cl, Br, I or NCS and PP′=(m- FC6H4)2PCH2CH2PPh2 or (p-FC6H4)2PCH2CH2PPh2) have been synthesized and characterized on the basis of 31P{1H}NMR1H NMR, IR and UV spectroscopy, elemental analysis and magnetic susceptibility measurements. All these complexes are found to be low spin, diamagnetic and square planar. 31P{1H} spectra of these complexes exhibit extraordinarily large downfield coordination chemical shifts, J(31P31P′) and J(195pt31P) couplings are discussed. Ring contribution (ΔR) values for palladium and platinum complexes are calculated from 31P NMR data.  相似文献   

2.
The 4-hydroxysalicylidenechitosan Schiff-base (2CS-Hdhba) was prepared by the condensation of 2,4-dihydroxybenzaldehyde with chitosan, and its metal complexes, [M(2CS-dhba)Cl2(H2O)2] (M(III) = Fe, Ru, Rh), [M′(2CS-dhba)(AcO)(H2O)2] (M′(II) = Co, Ni, Cu, Zn), [Pd(2CS-dhba)Cl(H2O)] and [Au(2CS-dhba)Cl2], are reported. These complexes were characterized by elemental analysis, by spectral data (FTIR, solid-phase 13C NMR, UV–vis and ESR spectroscopy), by morphological observations (SEM and XRD), and by magnetic and thermal measurements. The Schiff base (2CS-Hdhba) behaves as a bidentate chelate with a single negative charge. The azomethine nitrogen and the deprotonated 2-hydroxy centres with the pendant glucosamine hydroxy functionality play no role in coordination. The dissociation constants of 2CS-Hdhba and the stability constants of some of its metal complexes have been determined pH-metrically.  相似文献   

3.
A series of hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(B)L n ] (n = 1–4; B = PPh3, AsPh3 or Py) have been synthesized by reacting dibasic quadridentate Schiff base ligands H2L n (n = 1–4) with starting complexes [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py). The synthesized complexes were characterized using elemental and various spectral studies including UV–Vis, FT-IR, NMR (1H, 13C and 31P) and mass spectroscopy. An octahedral geometry was tentatively proposed for all the complexes based on the spectral data obtained. The experiments on antioxidant activity showed that the ruthenium(II) S-methylisothiosemicarbazone Schiff base complexes exhibited good scavenging activity against various free radicals (DPPH, OH and NO). The in vitro cytotoxicity of these complexes has been evaluated by MTT assay. The results demonstrate that the complexes have good anticancer activities against selected cancer cell line, human breast cancer cell line (MCF-7) and human skin carcinoma cell line (A431). The DNA cleavage studies showed that the complexes have better cleavage of pBR 322 DNA.  相似文献   

4.
《Inorganica chimica acta》2002,328(1):111-122
The electrochemical oxidation of anodic metal (nickel, copper, zinc and cadmium) in acetonitrile solutions containing N,N′-bis[(4-methylphenyl)sulfonyl]ethylenediamine H2L and an additional nitrogen coligand, such as 1,10-phenanthroline, yielded mixed complexes of general formula [ML(phen)2] (M=Ni, Cu, Zn and Cd). The compounds have been characterized by microanalysis, IR and UV-Vis (Ni, Cu complexes) spectroscopy, FAB mass spectrometry, 1H NMR spectroscopic studies (Zn, Cd complexes) and EPR spectroscopy (Cu and Ni complexes). All compounds have also been characterized by single crystal X-ray diffraction. The molecular structures of these compounds consist of individual monomeric molecules in which the metal atom is in an [MN6] distorted octahedral environment.  相似文献   

5.
GeCl4 and meso-tetraarylporphyrins (H2TAPP) react in chloroform solvent for formation sandwich intermediate sitting-atop (i-SAT) complexes, [GeCl4(H2TAP)2]. The various spectral data (1H NMR, 13C NMR, UV-Vis, FT-IR and elemental analysis) were used for characterization of the i-SAT complexes. In the sandwich complexes, the pyrrole rings of two porphyrin macrocycles are tilted up and down and act as electron donors by lone pairs of pyrrolic nitrogens to germanium center of GeCl4. The spectral results of 1H NMR and FT-IR showed that in the i-SAT complexes, the hydrogen atoms of two pyrrolic nitrogens remained still on the porphyrin macrocycles.  相似文献   

6.
A series of four-coordinate, square-planar, dia- magnetic 1-diphenylphosphino-2-bis(m-trifluoro- methylphenyl)phosphinoethane complexes of type cis-[MX2(m-CF3P-P)] (M = Ni, Pd, Pt; X = Cl, Br, I or NCS) have been prepared. These complexes have been characterized by 31P {1H} NMR, 1H NMR, IR and UV spectroscopy, elemental analyses and magnetic susceptibility measurements. The effects of various substituents on the phenyl groups of the ditertiary phosphines on the solubility characteristics of the metal complexes are discussed.  相似文献   

7.
1:2, 1:1, 3:2 and 6:2 AgX:L adducts (where L is a tridentate phosphine, in detail: 1,1,1-tris(diphenylphosphinomethyl)ethane (Me-triphos) and bis(2-diphenylphosphinoethyl)phenylphosphine (Ph-triphos), X = O3SCF3, O3SCH3, BF4 or O2CCF3) have been synthesized and characterized by IR, NMR (1H, 31P and 19F) and ESI MS spectroscopy. The stoichiometry of the complexes is strongly dependent on the ligand to metal ratio employed and also on the nature of the counterion. 31P NMR (solution) data also show the complexes existing in solution, in some cases, however, disproportionating to adducts of different nuclearity. Oligonuclear species have been detected through ESI MS spectroscopy that has been demonstrated as a powerful tool for the identification of the solution species. AgBF4:Me-triphos (1:2) has been structurally characterized as [Ag(P,P′-Me-triphos)2](BF4) · H2O · 7/2 MeOH, while Ag(O3SCF3): Ph-triphos: H2O (6:2:4) is a spectacular two-dimensional polymer.  相似文献   

8.
Four ruthenium (II) complexes of general formula Ru(PPh3)2(L)2 have been synthesized and characterized. The spectroscopic and cyclic voltammetric studies of these complexes are also reported. X-ray crystal structure determination of two of the complexes reveal that Ru(II) occupies trans,trans,trans-(t,t,t) N2O2P2 centrosymmetric octahedral environments, with the ligand pair occupying the equatorial plane. 31P NMR confirms the presence of two trans-PPh3 groups in all the complexes. The transformation of the complexes in dichloromethane solution is studied by spectrophotometry and 31P NMR spectroscopy.  相似文献   

9.
Protein-induced distortion is a dramatic but not universally observed feature of sequence-specific DNA interactions. This is illustrated by the crystal structures of restriction enzyme–DNA complexes: While some of these structures exhibit DNA distortion, others do not. Among the latter is PvuII endonuclease, a small enzyme that is also amenable to NMR spectroscopic studies. Here 31P NMR spectroscopy is applied to demonstrate the unique spectral response of DNA to sequence-specific protein interactions. The 31P NMR spectrum of a noncognate DNA exhibits only spectral broadening upon the addition of enzyme. However, when enzyme is added to target DNA, a number of 31P resonances shift dramatically. The magnitudes of the chemical shifts (2–3 ppm) are among the largest observed. Site-specific substitution with phosphoramidates and phosphorothioates are used analyze these effects. While such spectral features have been interpreted as indicative of DNA backbone distortions, FRET analysis indicates that this does not occur in PvuII-cognate DNA complexes in solution. The distinct 31P spectral signature observed for cognate DNA mirrors that observed for the enzyme, underscoring the unique features of cognate complex formation.  相似文献   

10.
1‐phenyl‐3‐methyl‐4‐benzoyl‐5‐pyrazolone 4‐ethyl‐thiosemicarbazone (HL) and its copper(II), vanadium(V) and nickel(II) complexes: [Cu(L)(Cl)]·C2H5OH·( 1 ), [Cu(L)2]·H2O ( 2 ), [Cu(L)(Br)]·H2O·CH3OH ( 3 ), [Cu(L)(NO3)]·2C2H5OH ( 4 ), [VO2(L)]·2H2O ( 5 ), [Ni(L)2]·H2O ( 6 ), were synthesized and characterized. The ligand has been characterized by elemental analyses, IR, 1H NMR and 13C NMR spectroscopy. The tridentate nature of the ligand is evident from the IR spectra. The copper(II), vanadium(V) and nickel(II) complexes have been characterized by different physico‐chemical techniques such as molar conductivity, magnetic susceptibility measurements and electronic, infrared and electron paramagnetic resonance spectral studies. The structures of the ligand and its copper(II) ( 2 , 4 ), and vanadium(V) ( 5 ) complexes have been determined by single‐crystal X‐ray diffraction. The composition of the coordination polyhedron of the central atom in 2 , 4 and 5 is different. The tetrahedral coordination geometry of Cu was found in complex 2 while in complex 4 , it is square planar, in complex 5 the coordination polyhedron of the central ion is distorted square pyramid. The in vitro antibacterial activity of the complexes against Escherichia coli, Salmonella abony, Staphylococcus aureus, Bacillus cereus and the antifungal activity against Candida albicans strains was higher for the metal complexes than for free ligand. The effect of the free ligand and its metal complexes on the proliferation of HL‐60 cells was tested.  相似文献   

11.
《Inorganica chimica acta》1986,122(2):175-184
Eight cyclopentadienylrhodiumcarbonylphosphine and phosphite complexes have been prepared and their IR, 1H, and 31P NMR spectra recorded. A good correlation between carbonyl stretching frequencies and rhodium-phosphorous coupling constants has been observed. Reaction of these compounds with trifluorosulfonic acid, HCF3SO3, forms the expected cationic rhodium-hydride species which were examined using 1H and 31P NMR spectroscopy. Similar reactions between trifluoroacetic acid, HCF3CO2, and the phosphine compounds gave evidence of rapid proton exchange at the metal. Reaction between trifluoroacetic acid and cyclopentadienylrhodiumcarbonylphosphite compounds yielded new sets of rhodium-hydride resonances which were shown to be due to the formation of dinuclear rhodium complexes and cyclopentadienylrhodiumbis(phosphite) complexes which arise under the reaction conditions. A Scheme for the formation of these reaction products is presented which is consistent with all of the experimental data.  相似文献   

12.
New copper(I) complexes have been synthesized from the reaction of CuCl with 4- or 2-(diphenylphosphane)benzoic acid and KH2B(btz)2, KHB(btz)3, NaTpMe, KpzTp, KpzTpMe and KH2B(im)2(dmac). The complexes obtained have been characterized by elemental analyses and FT-IR in the solid state, and by NMR (1H and 31P{1H}) and electrospray mass spectroscopy in solution.Chemiluminescence technique was used to evaluate the superoxide scavenging activity of these new copper complexes.  相似文献   

13.
O,O′-dipropyldithiophosphate and O,O′-di-iso-butyldithiophosphate (Dtph) tetraphenylantimony(V) complexes of the general formula [Sb(C6H5)4{S2P(OR)2}] (R = C3H7, i-C4H9) were prepared and studied by means of 13C, 31P CP/MAS NMR spectroscopy and single-crystal X-ray diffraction. Distorted octahedral and trigonal bipyramidal molecular structures have been established for prepared complexes. These unexpected structural distinctions between chemically related compounds are defined by the principally different coordination modes of O,O′-dipropyldithiophosphate and O,O′-di-iso-butyldithiophosphate ligands in their molecular structures (i.e., S,S′-bidentate chelating and S-unidentately coordinated, respectively). To characterise quantitatively phosphorus sites in both species of dithiophosphate ligands, 31P chemical shift anisotropy parameters (δaniso and η) were calculated from spinning sideband manifolds in MAS NMR spectra. The 31P chemical shift tensors for the bidentate chelating and unidentately coordinated dithiophosphate ligands display a profoundly rhombic and nearly axially symmetric characters, respectively.  相似文献   

14.
The CuII coordination chemistry of three synthetic analogues of westiellamide (H3Lwa) with an [18]azacrown-6 macrocyclic structure and imidazole (H3L1), oxazole (H3L2), or thiazole (H3L3) heterocyclic donors in addition to the peptide groups, is reported. The Nheterocycle–Npeptide–Nheterocycle binding sites are highly preorganized for the coordination to CuII ions. The stability constants of mono- and dinuclear CuII complexes of H3L1, H3L2, and H3L3, obtained by isothermal titration microcalorimetry, are reported. EPR and NMR spectroscopy as well as electrospray ionization mass spectrometry (ESI-MS) were used to characterize the complexes formed in solution. The stabilities of the mononuclear and dinuclear CuII complexes of the three ligands are in the range of 105 M−1, but there are subtle differences; specifically the oxazole-derived ligand has, in contrast to the other two macrocycles, a negative formation entropy for coordination to the first CuII ion and a higher stability for complexation to a second CuII center in comparison with the first CuII center (cooperativity). Differences between the three ligands are also apparent in terms of the formation mechanism. With the oxazole-based ligand H3L2, NMR spectroscopy, EPR spectroscopy, and ESI-MS indicate the formation of a ligand–CuII 2:1 intermediate, and this may explain the differences in the formation entropy as well as the cooperativity.  相似文献   

15.
A study of the reactions of M(CO)5(P(OCH2CH2CH(Me)O)Cl) (M=Cr, Mo) with a variety of nucleophiles of the type HER (E=NH, O, S; R=H, alkyl, aryl) is reported. The 13C, 31P and 95Mo NMR and IR spectral data for the M(CO)5(P(OCH2CH2CH(Me)O)ER) complexes is presented and compared to that previously reported for some Mo(CO)5(P(OCH2CMe2CH2O)ER) complexes. This comparison provides insight into the manner in which variations in the metal and in the substitution on the 1,3,2-dioxaphosphorinane ring affect the electron density distribution within these complexes.The results from a study of the rates of chloride substitution by n-propylamine in the M(CO)s(P(OCH2CH2CH(Me)O)Cl) complexes are also presented. These rates are compared with those previously reported for chloride substitution by n-propylamine in the Mo(CO)5(P(OCH2CMe2CH2O)Cl) and Mo(CO)5(Ph2PCl) complexes. These comparisons, in conjunction with the NMR and IR studies, suggest that both the position of the Me groups on the phosphorinane ring and the amount of electron density on the P have significant effects upon the rate of chloride substitution in these complexes.  相似文献   

16.
The cytoprotective activity of F16BP has been documented in severe conditions such as convulsions, reperfusion injury, septic shock, diabetic complications, hypothermia-induced injury, UV-provoked skin damage and in other processes including apoptosis and excitotoxicity. F16BP shows very efficient cytoprotective activity in astroglial cells exposed to H2O2-provoked oxidative stress and during neuronal injury caused by hypoxic conditions. As most of the aforementioned processes involve iron activity-related conditions, we investigated the ferric and ferrous iron binding properties of F16BP under physiological conditions using 31P NMR and EPR spectroscopy. Our results indicate that cytoprotective F16BP activity is predominantly based on ferrous iron sequestration. 31P NMR spectroscopy of F16BP employing paramagnetic properties of iron clearly showed that F16BP forms stabile complexes with Fe2+ which was verified by EPR of another divalent cation—Mn2+. On the other hand, F16BP does not sequester ferric iron nor does it increase its redox activity as shown by 31P NMR and EPR spin-trapping. Therefore, F16BP may be beneficial in neurodegenerative and other conditions that are characterised by ferric iron stores and deposits.  相似文献   

17.
The new complex compounds [RuLCl(p‐cymene)] ? 3H2O and [NiL2(H2O)2] ? 3H2O (L: 1‐{4‐[(2‐hydroxy‐3‐methoxybenzylidene)amino]phenyl}ethanone) were prepared and characterized using FT‐IR, 1H‐ and 13C‐NMR, mass spectroscopy, TGA, elemental analysis, X‐ray powder diffraction and magnetic moment techniques. Octahedral geometry for new Ni(II) and Ru(II) complexes was proposed. Thermal decomposition confirmed the existence of lattice and coordinated water molecule in the complexes. To determine the antioxidant properties of Schiff base ligand and its Ni(II), Ru(II) metal complexes, FRAP, CUPRAC, ABTS and DPPH methods of antioxidant assays were used. Moreover, enzyme inhibition of complexes was evaluated against carbonic anhydrase I and II isoenzymes (CA I and CA II) and acetylcholinesterase (AChE). For CA I and CA II, the best inhibition enzymes, was the Ni(II) complex with 62.98±18.41, 86.17±23.62 Ki values, whereas this inhibition effect showed ligand with 24.53±2.66 Ki value for the AChE enzyme.  相似文献   

18.
Phosphoramido acid esters (CH3)2NP(O)X(p-OC6H4-CH3) (containing P-Cl (1), P-O (2), P-F (3), P-CN (5), and P-N (4,6) bonds, X for 2, 4 and 6 is OCH3, (C2H5)2N and morpholin) have been synthesized to investigate the structure-activity study of AChE enzyme inhibition, through the parameters logP, δ31P and IC50. After their characterization by 31P, 31P{1H}, 13C, 1H NMR, IR and mass spectroscopy, the parameters logP and δ31P (31P chemical shift in NMR) were used to evaluated the lipophilicity and electronical properties. The ability of compounds to inhibit human AChE was predicted by PASS software (version 1.193), and experimentally evaluated by a modified Ellman's assay.  相似文献   

19.
The intermediate sitting-atop (i-SAT) complexes are metalloporphyrins in which the metal ion is bonded to fewer than four nitrogen atoms in the distorted porphyrin plane. The i-SAT complexes may be considered as models for the initial steps of the metallation of the macrocycles. The new ionic intermediate sitting-atop complexes of [PCl3(H2t(X)pp)]Cl2 containing phosphorus(V) was synthesized by reaction of PCl5 and meso-tetraarylporphyrins (H2t(X)pp) in solvent free conditions. The structure of the complexes was confirmed by (1H, 31P, 13C) NMR, FT-IR and UV-Vis spectroscopies, elemental analysis and electrical conductometry. These data proved that only two pyrrolenine nitrogen atoms of the porphyrin act as electron donors to one phosphorus(V) center and so two pyrrolic protons remained still on the macrocycle.  相似文献   

20.
The solution structures of two 27 nt RNA hairpins and their complexes with cobalt(III)-hexammine [Co(NH3)63+] were determined by NMR spectroscopy. The RNA hairpins are variants of the P4 region from Escherichia coli RNase P RNA: a U-to-A mutant changing the identity of the bulged nucleotide, and a U-to-C, C-to-U double mutant changing only the bulge position. Structures calculated from NMR constraints show that the RNA hairpins adopt different conformations. In the U-to-C, C-to-U double mutant, the conserved bulged uridine in the P4 wild-type stem is found to be shifted in the 3′-direction by one nucleotide when compared with the wild-type structure. Co(NH3)63+ is used as a spectroscopic probe for Mg(H2O)62+ binding sites because both complexes have octahedral symmetry and have similar radii. Intermolecular NOE crosspeaks between Co(NH3)63+ and RNA protons were used to locate the site of Co(NH3)63+ binding to both RNA hairpins. The metal ion binds in the major groove near a bulge loop in both mutants, but is shifted 3′ by about one base pair in the double mutant. The change of the metal ion binding site is compared with results obtained on corresponding mutant RNase P RNA molecules as reported by Harris and co-workers (RNA, 1, 210–218).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号