首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of the mercury(II) amide Hg[N(SiMe3)3]2 with 3,3′-disubstituted binaphthols (HO)2C20H10(R)2-3,3′ (R = SiMe3, SiMe2Ph, SiMePh2, SiPh3) in a 2:1 stoichiometric ratio furnishes four hexacyclic 1,7-disilylsubstituted derivatives of peri-xanthenoxanthene (PXX). Reaction of these two reagents in a 1:1 ratio results in a mixture of the hexacyclic products as well as the related pentacyclic species which contain one hydroxyl group and only one C-O-C ring fusion. The structures of three of the hexacyclic products (R = SiMe3, SiMe2Ph, SiMePh2) and one of the pentacyclic products (R = SiMe3) have been obtained. The reaction of Hg[N(SiMe3)3]2 with the 3,3′-disubstituted binaphthols proceeds via an intramolecular electrophilic aromatic substitution reaction and several intermediates in this process have been detected using NMR (1H and 199Hg) spectroscopy.  相似文献   

2.
The Pd(II) and Pt(II) complexes with triazolopyrimidine C-nucleosides L1 (5,7-dimethyl-3-(2′,3′,5′-tri-O-benzoyl-β-d-ribofuranosyl-s-triazolo)[4,3-a]pyrimidine), L2 (5,7-dimethyl-3-β-d-ribofuranosyl-s-triazolo[4,3-a]pyrimidine) and L3 (5,7-dimethyl[1,5-a]-s-triazolopyrimidine), [Pd(en)(L1)](NO3)2, [Pd(bpy)(L1)](NO3)2, cis-Pd(L3)2Cl2, [Pd2(L3)2Cl4] · H2O, cis-Pd(L2)2Cl2 and [Pt3(L1)2Cl6] were synthesized and characterized by elemental analysis and NMR spectroscopy. The structure of the [Pd2(L3)2Cl4] · H2O complex was established by X-ray crystallography. The two L3 ligands are found in a head to tail orientation, with a Pd?Pd distance of 3.1254(17) Å. L1 coordinates to Pd(II) through N8 and N1 forming polymeric structures. L2 coordinates to Pd(II) through N8 in acidic solutions (0.1 M HCl) forming complexes of cis-geometry. The Pd(II) coordination to L2 does not affect the sugar conformation probably due to the high stability of the C-C glycoside bond.  相似文献   

3.
Mixed-ligand complexes [ReBr(CO)2(CNR)nL3−n] (1-4) [R = 4-CH3OC6H4, 4-CH3C6H4, C(CH3)3; L = P(OEt)3, PPh(OEt)2; n = 1, 2] were prepared by allowing carbonyl compounds [ReBr(CO)4L] and [ReBr(CO)3L2] to react with an excess of isocyanide. Treatment of these bromocomplexes [ReBr(CO)2(CNR)nL3−n] with SnCl2 · 2H2O yielded the trichlorostannyl derivatives [Re(SnCl3)(CO)2(CNR)nL3−n] (5-8). Trihydridestannyl complexes [Re(SnH3)(CO)2(CNR)nL3−n] (9-12) were prepared by allowing trichlorostannyl compounds 5-8 to react with NaBH4 in ethanol. The trimethylstannyl derivative [Re(SnMe3)(CO)2(CNC6H4-4-CH3){PPh(OEt)2}2] (13b) was also prepared by treating [Re(SnCl3)(CO)2(CNC6H4-4-CH3){PPh(OEt)2}2] with an excess of MgBrMe in diethylether. Reaction of the tin trihydride complexes [Re(SnH3)(CO)2(CNR)nL3−n] (9-12) with CO2 (1 atm) led to dinuclear OH-bridging bis(formate) derivatives [Re{Sn(OC(H)O)2(μ-OH)}(CO)2(CNR)nL3−n]2 (14, 15). The complexes were characterised spectroscopically (IR, 1H, 31P, 13C, 119Sn NMR) and by X-ray crystal structure determination of [Re(SnH3)(CO)2{CNC(CH3)3}{PPh(OEt)2}2] (10b).  相似文献   

4.
The first [Pd(Ln)2(ox)] xH2O oxalato(ox) complexes involving 2-chloro-N6-(benzyl)-9-isopropyladenine (L1; complex 1), 2-chloro-N6-(4-methoxybenzyl)-9-isopropyladenine (L2; 2), 2-chloro-N6-(2,3-dimethoxybenzyl)-9-isopropyladenine (L3; 3), 2-chloro-N6-(2,4-dimethoxybenzyl)-9-isopropyladenine (L4; 4), and 2-chloro-N6-(4-methylbenzyl)-9-isopropyladenine (L5; 5) have been synthesized by the reactions of potassium bis(oxalato)palladate(II) dihydrate, [K2Pd(ox)2]·2H2O, with the mentioned organic compounds (H2ox = oxalic acid; x = 0 for 1-3 and 5 or 2 for 4). Elemental analyses (C, H, N), FTIR, Raman and NMR (1H, 13C, 15N) spectroscopies, conductivity measurements and thermal studies (thermogravimetric and differential thermal analyses, TG/DTA) have been used to characterize the prepared complexes. The molecular structures of [Pd(L2)2(ox)] (2) and [Pd(L5)2(ox)]·L5·Me2CO (5·L5·Me2CO) have been determined by a single crystal X-ray analysis. The geometry of these complexes is slightly distorted square-planar with two appropriate Ln (n = 2 or 5) molecules mutually arranged in the head-to-head (2) or head-to-tail (5) orientation. The Ln ligands are coordinated to the central Pd(II) ion via the N7 atoms. The same conclusions regarding the binding properties of L1-L5 ligands can be made based on multinuclear NMR spectra. In vitro cytotoxicity of the complexes 1-5 has been evaluated against human chronic myelogenous leukaemia (K562) and human breast adenocarcinoma (MCF7) cancer cell lines. Significant cytotoxicity has been determined for the complexes 3 (IC50 = 6.2 μM) and 5 (IC50 = 6.8 μM) on the MCF7 cell line, which is even better than that found for the well-known and widely-used platinum-bearing antineoplastic drugs, i.e. oxaliplatin and cisplatin.  相似文献   

5.
《Inorganica chimica acta》1986,115(2):173-178
Reactions of W(CO)6 and NaBH4 with the phosphine-nitrile ligands Ph2PCH2CH2CN or Ph2PCH2CH(CH3)CN in hot ethanol or propanol for limited reaction times provide mixtures of the corresponding phosphine-imidate and phosphine-amine complexes of the stoichiometry (CO)4WL. Longer reaction times provide, in high yield, only the phosphine-amine complexes. Proton-decoupled carbon-13 NMR data from (CO)4W[Ph2PCH2CH(CH3)CH2NH2] are consistent with a locked, six-membered chelate ring in which the methyl group occupies an equatorial position. The NH and NH2 donor groups in the W(CO)4L complexes are displaced upon reaction with PhP(CH3)2 providing mixtures of cis and trans (CO)4WLL′ complexes.  相似文献   

6.
《Inorganica chimica acta》2006,359(9):2870-2878
The reaction of the cross-bridged cyclam ligand H2CBC with divalent ytterbium precursors, Yb[N(SiMe3)2]2[L]2 (L = THF or Et2O) or Yb(C5Me5)2(OEt2) afforded polymeric [Yb(CBC)]n (1), as the primary product. In addition, the Yb[N(SiMe3)2]2[L]2 reactions also afforded a small amount of an unusual mixed valence salt containing a trinuclear Yb(III) cluster cation featuring a triply bridging NH group and a mononuclear Yb(II) anion, {[Yb(CBC)]33-NH]}+ {Yb[N(SiMe3)2]3} (2). A related cluster containing an iodide counterion, {[Yb(CBC)]33-NH]}+ I (3), was also isolated in one case. The structures of salts 2 and 3 were determined by X-ray crystallography. Reaction of [Yb(CBC)]n with p-tolyldisulfide, (C6H4MeS)2, produced burgundy crystals of [Yb(CBC)(S-p-C6H4Me)]n (4). The 1H NMR spectra of 2 suggests that the trinuclear cation remains intact in THF-d8 solution.  相似文献   

7.
Treatment of 4N-monosubstituted bis(thiosemicarbazone) ligands of 3,5-diacetyl-1,2,4-triazol series with lithium tetrachloridopalladate gave the dinuclear complexes of general formula [Pd(μ-H3L1-5)]2, but using dichloridobistriphenylphosphinepalladium(II) salt, the first mononuclear bis(thiosemicarbazone)-palladium-triphenylphosphine complexes of the 3,5-diacetyl-1,2,4-triazol series, [Pd(H3L1-5)PPh3], have been obtained. All the compounds have been characterized by elemental analysis and by IR and NMR spectroscopy, and the crystal and molecular structures of dinuclear complexes [Pd(μ-H3L3)]2 and [Pd(μ-H3L5)]2 as well as mononuclear complexes [Pd(H3L1)PPh3], [Pd(H3L2)PPh3], [Pd(H3L3)PPh3] and [Pd(H3L4)PPh3] have been determined by X-ray crystallography. The new compounds synthesized have been evaluated for antiproliferative activity in vitro against NCI-H460, A2780 and A2780cisR human cancer cell lines. Subsequent toxicity study, on normal renal LLC-PK1 cells, shows that all compounds investigated exhibit very low toxicity on kidney cells with respect to cisplatin.  相似文献   

8.
A series of cis-bis{5-[(E)-2-(aryl)-1-diazenyl]quinolinolato}di-n-butyltin(IV) complexes has been synthesized and characterized by 1H-, 13C-, 119Sn NMR, ESI-MS (electrospray ionization mass spectrometry), IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The structures of four di-n-butyltin(IV) complexes, viz., nBu2Sn(L3)2 (3), nBu2Sn(L4)2 (4), nBu2Sn(L5)2 (5) and nBu2Sn(L7)2 · 0.5C6H6 (7) (LH = 5-[(E)-2-(aryl)-1-diazenyl)quinolin-8-ol) were determined by single crystal X-ray diffraction. In general, the complexes were found to adopt a distorted cis-octahedral arrangement around the tin atom. These complexes retain their solid-state structure in non-coordinating solvent as evidenced by 119Sn and 13C NMR spectroscopic results. The in vitro cytotoxicity of di-n-butyltin(IV) complexes (3-8) is reported against seven well characterized human tumour cell lines. The basicity of the two quinolinolato donor N and O atoms of the ligands are discussed in relation to the cytotoxicity data.  相似文献   

9.
Reactions of labile [MCl3(PPh3)2(NCMe)] (M = Tc, Re) precursors with 1H-benzoimidazole-2-thiol (H2L1), 5-methyl-1H-benzoimidazole-2-thiol (H2L2) and 1H-imidazole-2-thiol (H2L3), in the presence of PPh3 and [AsPh4]Cl gave a new series of trigonal bipyramidal M(III) complexes [AsPh4]{[M(PPh3)Cl(H2L1-3)3]Cl3} (M = Re, 1-3; M = Tc, 4-6). The molecular structures of 1 and 3 were determined by X-ray diffraction. When the reactions were carried out with benzothiazole-2-thiol (HL4) and benzoxazole-2-thiol (HL5), neutral paramagnetic monosubstituted M(III) complexes [M(PPh3)2Cl2(L4,5)] (M = Re, 8, 9; M = Tc, 10, 11) were obtained. In these compounds, the central metal ions adopt an octahedral coordination geometry as authenticated by single crystal X-ray diffraction analysis of 8 and 11. Rhenium and technetium complexes 1, 4 and rhenium chelate compounds 8, 9 have been also synthesized by reduction of [MO4] with PPh3 and HCl in the presence of the appropriate ligand. All the complexes were characterized by elemental analyses, FTIR and NMR spectroscopy.  相似文献   

10.
The syntheses and structures of homo- and heteronuclear biscarbene complexes with bithiophene spacers were investigated. The complexes were synthesized by lithiation of bithiophene followed by metallation using combinations of the metal precursors MnMeCp(CO)3, W(CO)6, Mo(CO)6 and Cr(CO)6, after which the reaction was quenched with triethyloxonium tetrafluoroborate. This classical Fischer method yielded monocarbene complexes, [MLnC(OEt)C4H2S-C4H3S], ([MLn] = Cr(CO)51a, W(CO)52a or MnMeCp(CO)23a), homonuclear biscarbene complexes, [MLnC(OEt)C4H2S-C4H2SC(OEt)MLn], ([MLn] = Cr(CO)51b, W(CO)52b or MnMeCp(CO)23b) and heteronuclear biscarbene complexes, [MLnC(OEt)C4H2S-C4H2SC(OEt)M′Ln] (1d: [MLn] = Cr(CO)5 and [M′Ln] = W(CO)5; 1e: [MLn] = MnMeCp(CO)2 and [M′Ln] = Cr(CO)5; 1f: [MLn] = Cr(CO)5 and [M′] = Mo(CO)5); 2d: [MLn] = MnMeCp(CO)2 and [M′Ln] = W(CO)5; 3c: [MLn] = MnMeCp(CO)2 and [M′Ln] = Mo(CO)5). Electron density calculations with the gaussian03 software package of 1e revealed a polar rod with the negative pole towards the chromium carbene side, whereas the biscarbenes 1d and 1b showed very little polarity. By-products resulting from activation of the carbene moieties in homonuclear biscarbene complexes included (i) ester-type complexes of the form [MLnC(OEt)C4H2S-C4H2SC(O)OEt], ([MLn] = Cr(CO)51c or W(CO)52c), formed in situ in the reaction of 1b and 2b, (ii) the organic bis-ester compound [EtOC(O)C4H2S-C4H2SC(O)OEt] 4, where both metal moieties had been substituted by oxygen and (iii) the carbon-carbon coupled dimeric bithienyl compound [C4H3S-C4H2SC(O)C(O)C4H2S-C4H3S] 5. By-products obtained from heteronuclear biscarbene reactions contain the former diketo compound (or a derivative) as spacer between two metal carbonyl fragments and have the general formula [MLnC(OEt)C4H2S-C4H2SCR-CR′C4H2S-C4H2SC(OEt)MLn] (5a: [M] = Cr(CO)5, R = OH, R′ = OEt; 5b: [M] = W(CO)5, R = R′ = O; 5c: [M] = Mo(CO)5, R = R′ = O). Reaction of 1d, 1e and 1f with hex-3-yne resulted in the formation of benzannulated products 6a, 6b and 6c. All novel complexes were fully characterized using various spectroscopic techniques. The crystal structures of 1b, 2a and 5 are reported.  相似文献   

11.
The group 6 metal complexes of 1,5-diselena[5]ferrocenophane (L) have been prepared and characterized. The structures of [M(CO)4L] (M = Cr, Mo) show that L adopts the unusual meso-2 conformation. E1/2 of the 1,1′-ferrocenylene group in three complexes is much more positive than that of the “free” ligand L due to the electron donation from L to the M(CO)4 fragment.  相似文献   

12.
The reaction of cis-[Os(CO)4Me2] with Me3NO in the THF or MeCN yields the complexes fac-[Os(CO)3(L)Me2] (where L = THF or MeCN). Whereas the THF complex is unstable and only characterised spectroscopically, fac-[Os(CO)3(MeCN)Me2] has been isolated as a white solid and fully characterized by both analytical and spectroscopic methods. These complexes fac-[Os(CO)3(L)Me2] are shown to be useful intermediates. Thus, reaction with PPh3 gives fac-[Os(CO)3(PPh3)Me2] in good yield.Reactions of fac-[Os(CO)3(L)Me2] (L = CO or MeCN) with CPh3PF6 or B(C6F5)3 have been investigated. Whereas cis-[Os(CO)4Me2] showed no reaction with either CPh3PF6 or B(C6F5)3, the reaction of fac-[Os(CO)3(MeCN)Me2] with CPh3PF6 in CH2Cl2 occurred over 16 h at room temperature to give an unstable cationic product and CPh3Me. The reaction was monitored by both IR and NMR spectroscopies. When this reaction of fac-[Os(CO)3(MeCN)Me2] was carried out in the presence of a trapping ligand such as MeCN, the stable cationic product [Os(CO)3(MeCN)2Me]+ could be isolated and identified spectroscopically.  相似文献   

13.
A series of the first zinc(II) complexes of the general composition [Zn(Ln)2Cl2xSolv (1-5) involving kinetin [N6-furfuryladenine, L1, xSolv = CH3OH, complex 1] and its derivatives, i.e. N6-(5-methylfurfuryl)adenine (L2, xSolv = 2H2O, 2), 2-chloro-N6-furfuryladenine (L3, 3), 2-chloro-N6-(5-methylfurfuryl)adenine (L4, 4) and 2-chloro-N6-furfuryl-9-isopropyladenine (L5, 5), as N-donor ligands has been synthesized. The complexes have been fully characterized by elemental analyses (C, H, N), FTIR, Raman, 1H and 13C NMR spectroscopy, conductivity measurements, thermogravimetric (TG) and differential thermal (DTA) analyses. Single crystal X-ray analysis determined the molecular structures of 2-chloro-N6-furfuryl-9-isopropyladenine (L5) and the complex [Zn(L1)2Cl2]·CH3OH. The Zn(II) ion is tetrahedrally coordinated by two chlorido ligands and two molecules of the L1 organic compound. The two ligands L1 are coordinated to the central Zn(II) ion via the N7 atoms. This conclusion can also be drawn from multinuclear NMR spectroscopic experiments.  相似文献   

14.
《Inorganica chimica acta》2001,312(1-2):215-220
The reaction of [M(H2O)3(CO)3]+ (M=Tc, Re) with Na[CpCo[PO(OR)2]3] (NaLOR; R=Me, Et) in water produced the compounds M(CO)3(LOR), all of which were yellow solids, in yields varying from 55 to 89%. The two compounds M(CO)3(LOEt) were structurally characterized by single crystal X-ray crystallography. In both cases, the ligand LOEt was bound to the metal center in a tridentate fashion utilizing an {OOO} donor set. The ligands LOR can be used as models for facially coordinated triaqua groups owing to their position in the spectrochemical series. Therefore, these four compounds, M(CO)3(LOR), can be considered structural models for [M(H2O)3(CO)3]+. Crystal data for Tc(CO)3(LOEt) are as follows: molecular formula C20H35CoO12P3Tc, MW=717.32, monoclinic, a=11.5661(11) Å, b=18.671(2) Å, c=13.7852(13) Å, β=92.770(2)°, V=2973.5(5) Å3, space group P21/n, Z=4, final R1=0.0669, wR2=0.1361. Crystal data for Re(CO)3(LOEt) are as follows: molecular formula C20H35CoO12P3Re, MW=805.52, monoclinic, a=11.5113(7) Å, b=18.6022(12) Å, c=13.7397(8) Å, β=92.7580(10)°, V=2938.7(3) Å3, space group P21/n, Z=4, final R1=0.0384, wR2=0.0760.  相似文献   

15.
Equilibrium constants, Kdis, for the solvent- dependent, solution-phase disproportionation equilibria of monosubstituted pentakis(arlisocyanide)cobalt(I) complexes: 2[Co(CNR)4L]+?[Co(CNR)3L2]+ + [Co(CNR)5]+, Kdis = [Co(CNR)3L2][Co(CNR)5][Co(CNR)4L]2 are measured by planimeter-integration of proton- NMR spectra at ambient temperature. The complexes, [Co(CNR)4L]ClO4, R = 2,6-Me2C6H3, L = P(C6H5)3, P(C6H4Cl-p)3, P(OC6H5)3, P(OC6H4Cl-p)3; R = o-MeC6H4, L = P(C6H4Cl-p)3, P(OC6H5)3, P(OC6H4Cl-p)3; R = 2,4,6-Me3C6H2, L = P(C6H5)3; R = 2,6-Et2C6H3, L = P(C6H5)3; are investigated in the deuterated solvents, CDCl3, CD3CN, (CD3)2CO, C5D5N, CD3NO2, and (CD3)2SO. Disproportionation seems to occur in all [Co(CNR)4L]+, but NMR study is facilitated by utilizing equivalent alkyl protons (i.e., Me-groups) on the RNC ligands.Correlation of Kdis values with steric-hindrance of the RNC in sets of complexes with the same P-ligand is evident in all solvents: Kdis decreases with increased steric-hindrance in RNC. The Kdis values for complexes with the same RNC and analogous triarylphosphine, triarylphosphite ligands (i.e., PR3, P(OR)3, same R) are approximately equal. The Kdis values for complexes of P-ligands with Cl-substituent are significantly larger than Kdis values for complexes with the corresponding unsubstituted P-ligands (e.g., [Co(CNR)4P(C6H4Clp)3]ClO4vs. [Co(CNR)4P(C6H5)3]ClO4) in (CD3)2CO and C5D5N solution, but are smaller in CDCl3 and CD3CN, and approximately equal in CD3NO2 and (CD3)2SO. Properties of the solvents are also considered.  相似文献   

16.
The copper(II) and nickel(II) complexes of three new 1,2-bis(1,4,7-triazacyclononane) ligands containing unsaturated four carbon bridging groups is studied by continuous variation UV-Vis spectroscopic and pH potentiometric equilibrium experiments. The cis-butene-2 (LC) linked ligand may form monomeric MN6-type complexes while the trans-butene-2 (LT) and butyne-2 (LY) ligands are prevented by their stereochemistry from forming monomeric complexes and form oligomeric complexes. It is determined that the stability of the CuLC2+ complex is not appreciably different from the oligomeric complexes of LT and LY. Single-crystal X-ray structure determinations are made on three square pyramidal Cu2L4+ complexes: [Cu2LCCl4] (1), [Cu2LYCl4] (2), and [Cu2LT(NO3)2(H2O)2](NO3)2 (3). The structure of [Ni2(LC)2](ClO4)4 · 2H2O (4) is a binuclear dimer that contains two nickel(II) ions sandwiched between two ligands, indicating that bis([9]aneN3) ligands with four linker atom chains may form either monomeric or oligomeric structures.  相似文献   

17.
Imidazole-2-thiol derivatives H2L1-3 (H2L1 = 1H-benzoimidazole-2-thiol, H2L2 = 5-methyl-1H-benzoimidazole-2-thiol, and H2L3 = 1H-imidazole-2-thiol) act as neutral monodentate ligands in a number of technetium and rhenium complexes. Disubstituted M(V) (M = Tc, Re) complexes of the type [AsPh4]{[MOCl2(H2Ln)2(H2O)]Cl2} are formed when [MOCl4] react with H2L1-3 in 1:2 stoichiometric ratio. Single crystal X-ray structure determinations were carried out on [AsPh4]{[TcOCl2(H2L1)2(H2O)]Cl2}. The coordination sphere is pseudo-octahedral in which the sulfur atoms of two ligands sit in the equatorial plane and a water molecule is in trans to the TcO multiple bond. All the complexes react with an excess of the corresponding ligand to form tetrasubstituted cationic species {[MO(H2Ln)4]Cl3}. These complexes can be also isolated by reaction of [MOCl4] with an excess of ligand. No complex is obtained with benzothiazole-2-thiol (HL4) and benzoxazole-2-thiol (HL5). Ligand exchange reactions of [ReOCl3(PPh3)2] with HL4,5 have also been investigated. Treating the oxo-precursor with HL4 no product is isolated, while with HL5 the chelate oxo-compound [ReOCl2(L5)(PPh3)] is formed as two isomers. An interesting organometallic complex of Re(IV) [ReCl3(L5∗)(PPh3)2] is obtained when a slight excess of HL5 reacts with [ReOCl3(PPh3)2] in refluxing benzene solution and in air. Geometry about the Re atom is approximately octahedral in which the equatorial plane contains three Cl atoms and the carbon atom of the benzoxazole ligand anion, the apical positions are occupied by two PPh3. The reaction with O-ethyl S-hydrogen p-tolyl carbonothioimidate HL6 which contains the same heteroatoms of HL5 does not form an organometallic species, but forms the chelate oxo-Re(V) complex [ReOCl2(L6)(PPh3)]. The solid-state structure has been authenticated by X-ray crystallography.  相似文献   

18.
《Inorganica chimica acta》1988,144(2):193-199
Addition of 1,2-W2Cl2(NMe2)4(W≡W) to a toluene slurry of LiCH(SiMe3)2(2 equiv) results in the formation of 1,2-W2[CH(SiMe3)2]2(NMe2)4(W≡W) (I) in 79% isolated yield. Compound I has been characterized by 1H and 13C NMR, IR, elemental analysis and single-crystal X-ray diffraction. The molecule exists exclusively in the gauche conformation in solution and in the solid state with WW = 2.320(1) Å. Compound I is very sterically encumbered as evidenced by: (1) large WWC angles, 110°, at the disyl ligand; (2) skewing of the NC2 planes of the NMe2 ligands off the WW vector; (3) anomalously large barriers to WNM2 bond rotation in solution; (4) the inertness of I towards CO2 and alcohols. However, compound I reacts with acetic anhydride to form 1,2-W2[CH(SiMe3)2]2(O2CMe)4(W≡W) (II) in 31% isolated yield. Compound II has been characterized by 1H and 13C NMR, IR, and elemental analysis. The mechanistic implications of these studies with regard to alcoholysis and CO2 insertion reactions of other 1,2-W2R2(NMe2)4 compounds are discussed. Crystal data for 1,2-W2[CH(SiMe3)2]2(NMe2)4 at −140°C: space group P21/n, a = 12.555(3), b = 18.699(5), c = 15.214(4) Å, β = 95.24(1)° and Z = 4.  相似文献   

19.
Bis(azido)bis(phosphine)-Pd(II) and -Pt(II) complexes, [M(N3)2L2] {L = PMe3, PEt3, PMe2Ph, dppe = 1,2-bis(diphenylphosphino)ethane}, underwent 1,3-dipolar cycloaddition with organic chiral isothiocyanates (R-NCS: R = (S)-(+)-1-phenylethyl, (R)-(−)-1-phenylethyl, (±)-1-phenylethyl, (S)-(+)-1-indanyl) to give the corresponding tetrazole-thiolato Pd(II) and Pt(II) complexes, trans-[M{S[CN4(R)]}2L2] or [M{S[CN4(R)]}2(dppe)]. Spectroscopic (IR and NMR) and X-ray structural analyses of the products showed that the absolute configuration of the starting organic isothiocyanates is retained throughout the reaction. Further treatments of the isolated tetrazole-thiolato complexes with electrophiles such as HCl or benzoyl chloride produced heterocyclic compounds containing a tetrazole thione or a tetrazolyl sulfide group. In addition, organic tetrazole thiones, [S = {CN4H(R)}] containing a chiral moiety, were prepared from NaN3 and R-NCS in the presence of water.  相似文献   

20.
《Inorganica chimica acta》1988,145(2):231-233
The photochemical oxidation reaction of W(CO)6 to [W(CO)4Cl2]2 with CCl4 was applied in the synthesis of [WCl2(CO)3(PPh3)2] and [WCl2(CO)2−- (dppe)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号