首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Inorganica chimica acta》1988,152(4):227-231
Mössbauer and electronic absorbance spectroscopic studies on the reactions of iron(II): ascorbic acid with molecular oxygen in aqueous and methanolic solutions are reported. Both spectroscopic techniques show that in the starting mixtures there are no iron(II): ascorbate complexes. On mixing the iron(II)/ascorbate solution with solutions containing molecular oxygen at pH 6–7 high spin iron(III) is observed in the Mössbauer spectrum. Coloured intermediates, the lifetimes of which are solvent dependent, are seen by stopped-flow spectrophotometry. We assign these coloured intermediates as iron(III) ascorbate complexes. The stoichiometry of the initial reaction between iron(II) and oxygen is shown to be 2Fe(II):O2 by stopped-flow methods. A scheme for the overall reactions is discussed.  相似文献   

2.
Complexes of iron(II) and iron(III) with 1-formylisoquinoline thiosemicarbazone (1-iqtsc-H), 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone (4-Me-5-NH2-1-iqtsc-H) and 4-(m-aminophenyl)-2-formylpyridine thiosemicarbazone (4-m-NH2ph-2-pytsc-H) were synthesized and characterized by elemental analysis, conductance measurements, magnetic susceptibilities (from room temperature down to liquid N2 temperature), and M?ssbauer, electronic, and infrared spectral studies. On the basis of these studies, a highly distorted, high-spin, five-coordinate structure for Fe(HL)SO4 (HL = 1-iqtsc-H, 4-Me-5-NH2-1-iqtsc-H or 4-m-NH2ph-2-pytsc-H) and a distorted, low-spin, octahedral structure for Fe(HL)Cl2 are suggested. The EPR spectra of iron(III) complexes show that all have dxy low-spin ground state. All these complexes have been screened for their antitumor activity against the P 388 lymphocytic leukemia test system in mice and have been found to possess significant activity at the dosages employed.  相似文献   

3.
The chromium(II) complexes CrX2(HMPA)2, in which X = Cl or Br and HMPA is hexamethylphosphoramide, and Cr(HMPA)4(BF4)2 have been prepared. The effective magnetic moments show little deviation from the value expected for high spin chromium(II) from room temperature to liquid nitrogen temperature. The diffuse reflectance spectra suggest that the chromium ions are in a strongly distorted six coordinate environment. The iron(II) complexes, FeX2(HMPA)2, X = Br or I, and [Fe(HMPA)4](BF4)2, from their magnetic behaviour and Mössbauer and electronic spectra, contain tetrahedral iron(II). The isomer shift of the last complex is the most positive so far reported for a tetrahedral iron(II) complex.  相似文献   

4.
Two novel monomeric [C18H17Cl3N2O2Fe] (1) and dimeric [C38H36N4O4Cl6Fe2] (2) Fe(III) tetradentate Schiff base complexes have been synthesized and their crystal structures have been determined by single crystal X-ray diffraction analysis. In complex (1) the Schiff base ligand coordinates toward one iron atom in a tetradentate mode and each iron atom is five coordinated with the coordination geometry around iron atom which can be described as a distorted square pyramid. The presence of a short (2.89 Å) non-bonding interatomic Fe···O distances between adjacent monomeric Fe(III) complexes results in the formation of a dimer. Structural analysis of compound (2) shows that the structure is a centrosymmetric dimer in which the six coordinated Fe(III) atoms are linked by μ-phenoxo bridges from one of the phenolic oxygen atoms of each Schiff base ligand to the opposite metal center. The variable-temperature (2-300 K) magnetic susceptibility (χ) data of these two compounds have been investigated. The results show that for both complexes Fe(III) centers are in the high spin configuration (S = 5/2) and indicate antiferromagnetic spin-exchange interaction between Fe(III) ions. The obtained results are briefly discussed using magnetostructural correlations developed for other class of iron(III) complexes.  相似文献   

5.
Mössbauer parameters are presented for a number of protoporphyrin IX iron(II) complexes containing ligands that allow the iron to be in a five coordinate high spin iron(II) electronic environment. Such environments are characterised by large quadrupole splittings in the range 4.0 to 4.4 mm s?1. These compounds have characteristic electronic spectra.The implications of catechol type ligands binding protoporphyrin IX iron II/III moieties are discussed.  相似文献   

6.
Using uv-visible absorption, epr, electrochemistry, and 13C nmr, the Fe(II) and Fe(III) binding sites of the antitumor antibiotics bleomycin and tallysomycin have been located. Both drugs appear to utilize the amine-pyrimidine-imidazole region for iron binding. The ligating atoms of the drugs for Fe(II) and Fe(III) are dependent for iron and the presence of buffer ions. The ligation of the pyrimidine moiety has been determined under a variety of experimental conditions and correlated with epr observation of high and low spin forms of Fe(III). The results indicate that the displacement of some of the ligating atoms does not inhibit the action of the iron-drug complex.  相似文献   

7.
Biological studies on [Fe(L)2](NO3).0.5H2O (1), [Fe(L)2][PF6] (2), [Co(L)2](NCS) (3), [Ni(HL)2]Cl2.3H2O (4) and Cu(L)(NO3) (5), where HL=C7H8N4S, pyridine-2-carbaldehyde thiosemicarbazone, have been carried out. The crystal structure of compound 3 has been solved. It consists of discrete monomeric cationic entities containing cobalt(III) ions in a distorted octahedral environment. The metal ion is bonded to one sulfur and two nitrogen atoms of each thiosemicarbazone molecule. The thiocyanate molecules act as counterions. The copper(II) and iron(III) complexes react with reduced glutathione and 2-mercaptoethanol. The reaction of compound 1 with the above thiols causes the reduction of the metal ion and bis(thiosemicarbazonato)iron(II) species are obtained. The redox activity, and in particular the reaction with cell thiols, seems to be related to the cytotoxicity of these complexes against Friend erithroleukemia cells and melanoma B16F10 cells.  相似文献   

8.
‘Intermediate’ spin iron(III) has been identified, using Mössbauer spectroscopy, in materials containing protoporphyrin(IX) iron(III). These materials were all precipitated from acid pH in the presence of a variety of ligands. The implications of the results are discussed both in comparison to other known ‘intermediate’ spin porphyrins and for their relevance to haem proteins.  相似文献   

9.
A binuclear complex has been produced by the reaction of an iron porphyrin (sodium tetra-p-sulfophenylporphine iron (III)-FeTPPS) with a copper metallo-tripeptide (copper (II) glycylglycyl-L-histidine-N-methylamide-CuGGH) in aqueous solution. The system has been characterized by electron spin resonance (ESR) spectroscopy, optical absorption spectroscopy, and electrochemical methods. Room-temperature ESR spectra of the copper complex and low-temperature ESR spectra of the iron porphine provide evidence for the formation of a binuclear complex. These findings are supported by absorption spectroscopy and electrochemical studies, and lead to a value of ca. 2 X 10(-3) M-1 (at room temperature) for the equilibrium constant for complex formation. The relevance of this system to the enzymic active site of mammalian cytochrome c oxidase is discussed.  相似文献   

10.
Each of the two beta peptides which comprise the B2 protein of Escherichia coli ribonucleotide reductase (RRB2) possesses a nonheme dinuclear iron cluster and a tyrosine residue at position 122. The oxidized form of the protein contains all high spin ferric iron and 1.0-1.4 tyrosyl radicals per RRB2 protein. In order to define the stoichiometry of in vitro dioxygen reduction catalyzed by fully reduced RRB2 we have quantified the reactants and products in the aerobic addition of Fe(II) to metal-free RRB2apo utilizing an oxygraph to quantify oxygen consumption, electron paramagnetic resonance to measure tyrosine radical generation, and M?ssbauer spectroscopy to determine the extent of iron oxidation. Our data indicate that 3.1 Fe(II) and 0.8 Tyr122 are oxidized per mol of O2 reduced. M?ssbauer experiments indicate that less than 8% of the iron is bound as mononuclear high spin Fe(III). Further, the aerobic addition of substoichiometric amounts of 57Fe to RRB2apo consistently produces dinuclear clusters, rather than mononuclear Fe(III) species, providing the first direct spectroscopic evidence for the preferential formation of the dinuclear units at the active site. These stoichiometry studies were extended to include the phenylalanine mutant protein (Y122F)RRB2 and show that 3.9 mol-equivalents of Fe(II) are oxidized per mol of O2 consumed. Our stoichiometry data has led us to propose a model for dioxygen activation catalyzed by RRB2 which invokes electron transfer between iron clusters.  相似文献   

11.
Horse heart ferric cytochrome c was investigated by the following three methods: (I) Light absorption spectrophotometry at 23 degrees C and 77 degrees K; (II) Electron paramagnetic resonance (EPR) spectroscopy at 20 degrees K; (III) Precise equilibrium measurements of ferric cytochrome c with azide and imidazole between 14.43 and 30.90 degrees C. I and II have demonstrated that: (1) Ferric cytochrome c azide and imidazole complexes were in the purely low spin state between 20 degrees K and 23 degrees C; (2) The energy for the three t2g orbitals calculated in one hole formalism shows that azide or imidazole bind to the heme iron in a similar manner to met-hemoglobin azide or imidazole complexes, respectively. III has demonstrated that: (1) The change of standard enthalpy and that of standard entropy were -2.3 kcal/mol and -1.6 cal/mol per degree for the azide complex formation, and -1.4 kcal/mol and 2.9 cal/mol per degree for the imidazole complex formation. (2) A linear relationship between the change of entropy and that of enthalpy was observed for the above data for the cyanide complex formation. The complex formation of ferric cytochrome c was discussed based on the results of X-ray crystallographic studies compared with hemoglobin and myoglobin.  相似文献   

12.
The condensation of 2-formyl-pyridine with Girard’s T reagent yields a new hydrazone in the form of an ammonium quaternary salt: [H(2-PyGT)]Cl. This tridentate ligand is readily soluble in water and reacts with iron(III) or copper(II) chlorides to give [Fe(2-PyGT)Cl3] (1) or [Cu(2-PyGT)Cl2]·(H2O) (2) complexes, respectively. Single-crystal X-ray studies in 1 and 2 reveal that the coordination reaction gives rise to the deprotonation of the organic ligand that is coordinated using its NNO donor atoms in the form of a zwitterion species. The coordination spheres around the transition metal ions in complexes 1 and 2 are quite different. In 1, the iron site adopts a distorted octahedral coordination sphere, while the Cu(II) ions in 2 show a distorted tetragonal-pyramid geometry. As expected, the magnetic properties of these compounds reveal only weak antiferromagnetic interaction between spin carriers.  相似文献   

13.
Proton magnetic resonance and absorption spectroscopy have been used to examine solutions of mixtures of reduced and oxidised iron protoporphyrin IX chloride in deuterated pyridine. The Fe(II) species are low spin but the Fe(III) complex is an equilibrium mixture of high and low spin forms. The movement to high field of the ring protons of the low-spin Fe(III) signals alone increases regularly with the amount of diamagnetic Fe(II) relative to the paramagnetic Fe(III) haem. The low spin Fe(III) must be in rapid exchange with the low-spin Fe(II) complex but not with the high-spin form. The addition of carbon monoxide to the Fe(II)/Fe(III) mixture effectively blocks electron exchange between the complexes as shown by a return of the proton resonances of the Fe(III) complex to positions seen in the absence of any Fe(II).  相似文献   

14.
Glutathione reductase (GR) carries out the enzymatic reduction of glutathione disulfide (GSSG) to its reduced form (GSH) at the expense of the reducing power of NADPH. Previous studies have shown that GR from several species is progressively inactivated in the presence of NADPH, but that the mechanism of inactivation (especially in the presence of metals) has not been fully elucidated. We have investigated the involvement of iron ions in the inactivation of yeast (Saccharomyces cerevisiae) GR in the presence of NADPH. Even in the absence of added iron, inactivation of GR was partly blocked by the iron chelators, deferoxamine and ortho-phenanthroline, suggesting the involvement of trace amounts of contaminating iron in the mechanism of inhibition. Exogenously added antioxidants including ethanol, dimethylsulfoxide and 2-deoxyribose did not protect GR against NADPH-induced inactivation, whilst addition of exogenous Fe(II) (but not Fe(III)) potentiated the inactivation. Moreover, removal of oxygen from the medium led to increased inhibition of GR, whereas pre-incubation of the Fe(II)-containing medium for 30 min under normoxic conditions prior to the addition of GR abolished the enzyme inactivation by NADPH. Under these pre-incubation conditions, Fe(II) is fully oxidized to Fe(III) within 1 min. Furthermore, GR that had been previously inactivated in the presence of Fe(II) plus NADPH could be partially reactivated by treatment with ortho-phenanthroline and deferoxamine. In contrast, Fe(III) had no effect on GR reactivation. Together, these results indicate that yeast GR is inactivated by a reductive mechanism mediated by NADPH and Fe(II). According to this mechanism, GR is diverted from its normal redox cycling by the generation of an inactive reduced enzyme form in which both the FAD and thiol groups at the active site are likely in a reduced state.  相似文献   

15.
Mössbauer (78 K) and electronic absorption spectra (room temperature) of tetra(sulphonaphthyl)- porphine iron(II) solutions are reported and discussed. Evidence for only two iron(II) electronic environments, a low spin and a high spin site is found. The nature of each iron(II) environment is deduced with reference to previous work. The influence of the steric bulk of the meso substituents is discussed in comparison to similar studies on protoporphyrin IX iron(II) solutions and tetra(p-sulphophenyl)iron(II) solutions. The presence of the napthyl substituents on the methine carbons stabilises the low spin iron(II) species containing two axial water ligands.  相似文献   

16.
Nitrosyliron(III) hemoglobin: autoreduction and spectroscopy   总被引:3,自引:0,他引:3  
A W Addison  J J Stephanos 《Biochemistry》1986,25(14):4104-4113
Nitrosyl complexes of the iron(III) forms of myoglobin, human hemoglobin, Glycera dibranchiata hemoglobins (Hbm and Hbh), and model iron(II) and iron(III) synthetic porphyrins including octaethylporphyrin (OEP) have been prepared. The iron(III) heme proteins are electron spin (paramagnetic) resonance (ESR) silent, while hexacoordinate solution structures are indicated for [Fe(OEP)(NO)2]ClO4 and for Hbm(II)NO, which has an ESR spectrum similar to that of Mb(II)NO and the hexacoordinate iron(II) model complex Fe(OEP)NO(BzIm). The splitting of the alpha- and beta-bands in the optical spectrum of Mb(III)NO and Hbh(III)NO contrasts markedly with the sharp, single bands observed in that of Hbm-(III)NO. The nondegeneracy of the dxz and dyz orbitals in Mb(III)NO and Hbh(III)NO is attributed to the influence of the distal histidine. Circular dichroism spectra were obtained for Hbm(III)NO, Hbm(II)NO, Hbh(III)NO, Hbh(II)NO, Mb(II)NO, and Mb(III)NO. The vicinal chiral center contribution that governs the heme protein CD leads to low Kuhn anisotropies, which have been used to assign certain electronic transitions. The Hb(III)NO spectrum is not stable but transforms into that of Hb(II)NO. This autoredox process follows kinetics that are first order in FeIIINO. The relative rates of autoreduction (25 degrees C, 1 atm NO) are Mb(III)NO less than Hbm(III)NO less than Hb alpha(III)NO less than HbA(III)NO. At high NO partial pressure or after "recycling" of HbA, the rates of reduction decrease. The first step in the reaction of NO with the ferric heme is the reversible formation of the formally iron(III) adduct. This reacts with another molecule of NO, generating the final heme(II)-NO via nitrosylation of NO itself or of an endogenous nucleophile. Kinetic and spectroscopic evidence shows involvement of trans-heme-(NO)2 in the reaction. The activation parameters delta H and delta S were determined. The overall reaction is photoenhanced.  相似文献   

17.
The reactions of dilute solutions of octaethylporphyrin and its iron (II) and iron (III) complexes with methyl, 2-cyanopropyl, t-butoxy, and benzoyloxy radicals are described. The results are summarized: (i) The reactivity of the porphyrin and its high-spin iron (II) and iron (III) complexes toward alkyl and t-butoxy radicals stands in the order: FeII > FeIII ? free porphyrin. For benzoyloxy radicals the order is FeII > Porp > FeIII. (ii) The exclusive path of reaction of high-spin iron (II) porphyrin with radicals is the rapid reduction of the radical and generation of an iron (III) porphyrin. The dominant path of reaction of high-spin iron (III) porphyrin with alkyl and (presumably) t-butoxy radicals is a rapid axial inner sphere reduction of the porphyrin. An axial ligand of iron is transferred to the radical. (iv) The reaction of benzoyloxy radicals with high or low-spin iron (III) porphyrins occurs primarily at the meso position. With the low-spin dipyridyl complex in pyridine the attendant reduction to iron (II) can be observed spectrally. Methyl radicals also reduce this complex by adding to the meso position. (v) The reaction of a radical with either an iron (II) or an iron (III) porphyrin results in the generation of the other valence state of iron and consequently oxidation and reduction products emanating from both iron species are obtained. (vi) No evidence for an iron (IV) is intermediate is apparent. (vii) Iron (II) porphyrins in solvents that impart either spin state are easily oxidized by diacyl peroxides. The occurrence of both axial and peripheral redox reactions with the iron complexes supports an underlying premise of a recent theory of hemeprotein reactivity. The relevance of the work to bioelectron transfer and heme catabolism is noted.  相似文献   

18.
The synthesis of a new tetrapyridyl ligand, bis[di-1,1-(2-pyridyl)ethyl]amine (BDPEA), is described. Complexation of this ligand with manganese(II), iron(III) or copper(II) chlorides afforded mononuclear complexes: Mn(BDPEA)Cl2 (1) [Fe (BDPEA)Cl2]Cl (2) and [Cu(BDPEA)Cl]Cl (3). In all cases, BDPEA is coordinated to the metal center by three pyridine nitrogen atoms and the secondary amine. The geometrical environments around the metals in Mn(BDPEA)Cl2 and [Fe(BDPEA)Cl2]Cl are best described as distorted octahedrals and in [Cu (BDPEA)Cl]Cl as a slightly distorted square pyramid. The DNA cleavage activities of manganese(II), iron (III) or copper(II) complexes of both BDPEA and another tetrapyridyl ligand, bis[di(2-pyridyl) methyl]amine (BDPMA), in the presence of an oxidant (H2O2) or a reducing agent (ascorbate) with air, are reported. The iron(III) complexes exhibited significantly enhanced efficiencies, compared to copper(II) complexes. [Fe(BDPEA)Cl2]Cl is found to be the most active DNA cleaver, in agreement with a better stability of BDPEA in oxidizing conditions.  相似文献   

19.
We report an optical and EPR spectral study of three hemoglobins, Hb I, II, and III, from the gill of the clam Lucina pectinata. Hemoglobin I reacts much more avidly with hydrogen sulfide than do Hbs II and III. The proximal ligand to the heme iron of each hemoglobin is histidyl imidazole. The acid/alkaline transition of ferric Hb I occurs with pK 9.6; those of ferric Hbs II and III with pK 6.6 and 5.9, respectively. At their acid limits each ferric hemoglobin exists as aquoferric hemoglobin. Broadening of the g = 6 resonance suggests that the bound water enjoys great positional freedom. Ferric Hb I, at the alkaline limit (pH 11), exists as ferric hemoglobin hydroxide. Ferric Hbs II and III, at their alkaline limit (pH 7.5), each exist as equal mixtures of two species. The low spin species with optical maxima near 541 and 576 nm and g values of 2.61, 2.20, and 1.82, are identified as ferric hemoglobin hydroxide. The high spin species, with optical maxima near 486 and 603 nm and g values of 6.71, 5.87, and 5.06, resemble Dicrocoelium hemoglobin and hemoglobin MSaskatoon. Here we show that Hbs II and III resemble hemoglobin MSaskatoon in which a distal tyrosinate oxygen ligated to the ferric heme iron at alkaline pH is displaced by water at acid pH. The H2S product of ferric Hb I is identified as ferric hemoglobin sulfide.  相似文献   

20.
Adducts (1:1) of halides of cobalt(II), nickel(II), manganese(II), copper(II), iron(III) and chromium(III) with dibenzoyldisulphide have been isolated and characterized on the basis of elemental analysis, molar conductance, magnetic susceptibility, infrared spectra, molecular weight and thermogravimetric analysis data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号