首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The average chain length a amylopectin of 27 starch samples was a aasayed by a new method and it was found that A-type starch had shorter chain lengtt than B-type starch. In addition, amylodextrin samples with shorter average chain lengths had the strong tendency to crystallize into the A-type. shorter average chain lengths had the strong tendency to crystalline into the A-type.  相似文献   

2.
Molecular models of amylopectin were created and investigated by computer simulation. First, single and double helices of various lengths were constructed. The 1 → 6 branching in double and single helices of amylopectin was studied. Subunits of single helices, double helices, and branch points were used as building blocks of larger systems. The possible makeup of amylopectin unit clusters was investigated via a series of models, including single–single, double–single, and double–double helix systems. The lengths of the single helix section that linked two branch points (internal chains) was systematically varied between values of 0–10 glucose residues. It was found that certain internal chain lengths lead to parallel double helices. Thus, it was postulated that the length of internal chains may determine the degree of local crystallinity. Furthermore, it was noted that some of the low‐energy arrangement of double helices could be superimposed on either the two adjacent and nonadjacent double helices of crystalline A and B starch polymorphs. In other cases, the distance between the double helices is so large that it may in fact be a model for branching between two amylopectin crystals or unit clusters. Results obtained through this work were corroborated, where possible, with information available from crystallographic, branching, and enzymatic studies. © 1999 John Wiley & Sons, Inc. Biopoly 50: 381–390, 1999  相似文献   

3.
The elongation of amylose and amylopectin chains in isolated starch granules   总被引:14,自引:1,他引:13  
The aim of this work was to investigate the conditions required for amylose synthesis in starch granules. Although the major granule-bound isoform of starch synthase - GBSSI - catalyses the synthesis of amylose in vivo, 14C from ADP[14C]glucose was incorporated primarily into a specific subset of amylopectin chains when supplied to starch granules isolated from pea (Pisum sativum L.) embryos and potato (Solanum tuberosum L.) tubers. Incubation of granules with soluble extracts of these organs revealed that the extracts contained compounds that increased the incorporation of 14C into amylose. These compounds were rendered inactive by treatment of the extracts with α-glucosidase, suggesting that they were malto-oligosaccharides. Consistent with this idea, provision of pure malto-oligosaccharides to isolated granules resulted in a dramatic shift in the pattern of incorporation of 14C, from amylopectin chains to amylose molecules. Comparison of the pattern of incorporation in granules from wild-type peas and lam mutant peas which lack GBSSI showed that this effect of malto-oligosaccharides was specifically on GBSSI. The significance of these results for understanding of the synthesis of amylose and amylopectin in storage organs is discussed.  相似文献   

4.
This study assessed the impact on starch metabolism in Arabidopsis leaves of simultaneously eliminating multiple soluble starch synthases (SS) from among SS1, SS2, and SS3. Double mutant ss1- ss2- or ss1- ss3- lines were generated using confirmed null mutations. These were compared to the wild type, each single mutant, and ss1- ss2- ss3- triple mutant lines grown in standardized environments. Double mutant plants developed similarly to the wild type, although they accumulated less leaf starch in both short-day and long-day diurnal cycles. Despite the reduced levels in the double mutants, lines containing only SS2 and SS4, or SS3 and SS4, are able to produce substantial amounts of starch granules. In both double mutants the residual starch was structurally modified including higher ratios of amylose:amylopectin, altered glucan chain length distribution within amylopectin, abnormal granule morphology, and altered placement of α(1→6) branch linkages relative to the reducing end of each linear chain. The data demonstrate that SS activity affects not only chain elongation but also the net result of branch placement accomplished by the balanced activities of starch branching enzymes and starch debranching enzymes. SS3 was shown partially to overlap in function with SS1 for the generation of short glucan chains within amylopectin. Compensatory functions that, in some instances, allow continued residual starch production in the absence of specific SS classes were identified, probaby accomplished by the granule bound starch synthase GBSS1.  相似文献   

5.
Size distributions of extracts derived from starch were investigated to aid in elucidating structure-function relationships of these polymers in water. Starch granules derived from waxy maize and amylomaize VII were dissolved in water by microwave heating in a high pressure vessel. Transmission electron microscopy of starch deposited from dilute solution and rotary shadowed with platinum, revealed that amylopectin imaged from waxy maize could be broadly classified as about 28% circular space filling patches containing branched clusters and 72% asymmetric linear containing branched clusters. Lengths of asymmetric linear amylopectin components ranged from about 37 to 980 nm whereas the diameter of circular amylopectin components ranged from about 44 to 200 nm. Although the starch in amylomaize VII is about 70% amylose, its narrow asymmetric structure when visualized by microscopy enabled us to image amylose even though amylopectin was present. Lengths of components ranged from about 46 to 254 nm. After smoothing and curve fitting, we found that all size distributions investigated could be treated as if they were multimodal in nature. The most abundant amylose component had a linear density of 8.2 × 103 molar mass units/ nm. This value could be explained if amylose had an aggregation number of about 5.9.  相似文献   

6.
The barley protein limit dextrinase inhibitor (LDI), structurally related to the alpha-amylase/trypsin inhibitor family, is an inhibitor of the starch debranching enzyme limit dextrinase (LD). In order to investigate the function of LDI, and the consequences for starch metabolism of reduced LDI activity, transgenic barley plants designed to downregulate LDI by antisense were generated. Homozygous antisense lines with reduced LDI protein level and activity were analysed and found to have enhanced free LD activity in both developing and germinating grains. In addition the antisense lines showed unpredicted pleiotropic effects on numerous enzyme activities, for example, alpha- and beta-amylases and starch synthases. Analysis of the starch showed much reduced numbers of the small B-type starch granules, as well as reduced amylose relative to amylopectin levels and reduced total starch. The chain length distribution of the amylopectin was modified with less of the longer chains (>25 units) and enhanced number of medium chains (10-15 units). These results suggest an important role for LDI and LD during starch synthesis as well as during starch breakdown.  相似文献   

7.
The distribution of substituents in hydroxypropylated potato amylopectin starch (amylose deficient) modified in a slurry of granular starch (HPPAPg) or in a polymer 'solution' of dissolved starch (HPPAPs), was investigated. The molar substitution (MS) was determined by three different methods: proton nuclear magnetic resonance (1H NMR) spectroscopy, gas-liquid chromatography (GLC) with mass spectrometry, and a colourimetric method. The MS values obtained by 1H NMR spectroscopy were higher than those obtained by GLC-mass spectrometry analysis and colourimetry. The relative ratio of 2-, 3-, and 6-substitution, as well as un-, mono-, and disubstitution in the anhydroglucose unit (AGU) were determined by GLC-mass spectrometry analysis. Results obtained showed no significant difference in molar distribution of hydroxypropyl groups in the AGU between the two derivatives. For analysis of the distribution pattern along the polymer chain, the starch derivatives were hydrolysed by enzymes with different selectivities. Debranching of the polymers indicated that more substituents were located in close vicinity to branching points in HPPAPg than in HPPAPs. Simultaneous alpha-amylase and amyloglucosidase hydrolysis of HPPAPg liberated more unsubstituted glucose units than the hydrolysis of HPPAPs, indicating a more heterogeneous distribution of substituents in HPPAPg.  相似文献   

8.
9.
SANS study of the distribution of water within starch granules   总被引:2,自引:0,他引:2  
This study describes contrast variation small angle neutron scattering (SANS) experiments which focus on the role which the intra-granular room temperature distribution of water and carbohydrate plays in determining the native structure and subsequent functionality of starch. It is shown that variations in botanical origin and amylose content do not correlate with significant differences in room temperature composition of A-type starch granules. In turn, variations in the gelatinisation behaviour of A-type starches do not correlate with variations in room temperature water distribution. In contrast, the room temperature water content is found to differ significantly between granules of potato (B-type) and a range of A-type starch cultivars. A correlation is found between these compositional differences and variations in crystal structure, which has implications for biological growth conditions and gelatinisation behaviour.  相似文献   

10.
Reductions in activity of SSIII, the major isoform of starch synthase responsible for amylopectin synthesis in the potato tuber, result in fissuring of the starch granules. To discover the causes of the fissuring, and thus to shed light on factors that influence starch granule morphology in general, SSIII antisense lines were compared with lines with reductions in the major granule-bound isoform of starch synthase (GBSS) and lines with reductions in activity of both SSIII and GBSS (SSIII/GBSS antisense lines). This revealed that fissuring resulted from the activity of GBSS in the SSIII antisense background. Control (untransformed) lines and GBSS and SSIII/GBSS antisense lines had unfissured granules. Starch analyses showed that granules from SSIII antisense tubers had a greater number of long glucan chains than did granules from the other lines, in the form of larger amylose molecules and a unique fraction of very long amylopectin chains. These are likely to result from increased flux through GBSS in SSIII antisense tubers, in response to the elevated content of ADP-glucose in these tubers. It is proposed that the long glucan chains disrupt organization of the semi-crystalline parts of the matrix, setting up stresses in the matrix that lead to fissuring.  相似文献   

11.
The amylose to amylopectin ratios in six maize starch samples of differing amylose contents were measured by enzymatic debranching, followed by high performance size exclusion chromatography (HPSEC). The molecular size of amyloses, estimated by -log Kwav, shows progressive decrease with the increase in amylose content in maize starches. The gel permeation chromatographs of the corresponding amylopectins, debranched with isoamylase, showed bimodal distributions containing long and short chains. The average chain length of amylopectin has a correlation with amylose content. The correlation coefficients between amylose content and average chain length, long chain length, weight ratio and the mole ratio of long and short chain length, were 0.97, 0.92, 0.96, 0.94 respectively. The maize starch with the highest amylose content has the lowest amylose molecular size and the longest chains, with a high ratio of long to short chains in its amylopectin fraction. Comparing the values of amylose content determined by HPSEC of starch or debranched starch with those of the iodinecomplex method, we conclude that long chains of amylopectin in high amylose starches contribute significantly to apparent amylose content.  相似文献   

12.
The molecular structure of amylopectin and its varphi,beta-limit dextrins from starch of 13 amaranth cultivars was determined by HPAEC-PAD after debranching. Chain length profiles of amylopectins showed bimodal distributions. The molar-based ratios of the average chain lengths of amylopectins (CLap) ranged from 17.41 to 18.22. The molar-based average chain lengths (CLld) and average B-chain lengths (BCLld) of varphi,beta-limit dextrins varied from 7.68 to 8.05, and from 14.10 to 14.73, respectively. Correlation analysis indicated that most structural parameters were positively correlated with thermal properties with few exceptions, whereas the content of fraction fa' ("'" stands for molar-based chain length ratio) was negatively correlated with the thermal properties. Pasting properties of cold paste viscosity (CPV) and setback were also correlated with amylopectin structural parameters.  相似文献   

13.
The study has demonstrated a certain relationship between the content of grisine components with a different length of the polypeptide chain. The relationship allows an assay of the content with respect to the ratio of areas of chromatographic peaks of the short-chained components F and D. This procedure shortens the time spent on an identification of grisine components almost two-fold. It is concluded that the proportion depends on the kinetics of the linear process of the sequential elongation of the component chain.  相似文献   

14.
Amylopectin granules were purified from Eimeria tenella oocysts following digestion with sodium dodecyl sulfate and pronase. The oval granules had a uniform size of 0.5 X 0.7 mum, and consisted of only glucose polymers. alpha-Amylase treatment yielded 235 nmoles of maltose from the granules from 10(6) unsporulated oocysts and 93 nmoles maltose from those from 10(6) sporulated oocysts. Amylopectin phosphorylase activity was detected in the cytoplasm of unsporulated oocysts of E. tenella. It had a specific activity of 13 U/mg protein in crude extracts, and a pH optimum of 6.0. The Km values determined were 9.1 mM for glucose-1-phosphate and 5.6 mM for glucose end groups in potato amylopectin. Enzyme activity declined at a linear rate during sporulation, sporulated oocysts containing less than 8% of the activity of unsporulated oocysts. No amylase-type activity was found in the parasite.  相似文献   

15.
It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize starch granules by measuring the clear zones on starch agar plates. The six cultures which produced clear zones on amylopectin maize starch- containing plates were selected for further studies for utilization of amylopectin maize starch and high-amylose maize starch granules A (amylose; Sigma) and B (Culture Pro 958N). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect bacterial starch-degrading enzymes. It was demonstrated that Bifidobacterium spp., Bacteroides spp., Fusobacterium spp., and strains of Eubacterium, Clostridium, Streptococcus, and Propionibacterium could hydrolyze the gelatinized amylopectin maize starch, while only Bifidobacterium spp. and Clostridium butyricum could efficiently utilize high-amylose maize starch granules. In fact, C. butyricum and Bifidobacterium spp. had higher specific growth rates in the autoclaved medium containing high-amylose maize starch granules and hydrolyzed 80 and 40% of the amylose, respectively. Starch-degrading enzymes were cell bound on Bifidobacterium and Bacteroides cells and were extracellular for C. butyricum. Active staining for starch-degrading enzymes on SDS-PAGE gels showed that the Bifidobacterium cells produced several starch-degrading enzymes with high relative molecular (M(r)) weights (>160,000), medium-sized relative molecular weights (>66,000), and low relative molecular weights (<66,000). It was concluded that Bifidobacterium spp. and C. butyricum degraded and utilized granules of amylomaize starch.  相似文献   

16.
Morphology, molecular structure, and thermal properties of potato starch granules with low to high phosphate content were studied as an effect of mild acid hydrolysis (lintnerization) to 80% solubilization at two temperatures (25 and 45°C). Light microscopy showed that the lintners contained apparently intact granules, which disintegrated into fragments upon dehydration. Transmission electron microscopy of rehydrated lintners revealed lacy networks of smaller subunits. The molecular composition of the lintners suggested that they largely consisted of remnants of crystalline lamellae. When lintnerization was performed at 45°C, the lintners contained more of branched dextrins compared to 25°C in both low and intermediate phosphate‐containing samples. High‐phosphate‐containing starch was, however, unaffected by temperature and this was probably due to an altered amylopectin structure rather than the phosphate content. After lintnerization, the melting endotherms were broad with decreased onset and increased peak melting temperatures. The relative crystallinity was lower in lintners prepared at 45°C. A hypothesis that combines the kinetics of lintnerization with the molecular and thermal characteristics of the lintners is presented. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 257–271, 2014.  相似文献   

17.
An electron paramagnetic resonance (EPR) study was performed for potato and wheat starch containing Cu2+ ions as a paramagnetic probe. Distribution of water in the starch granules as well as the interactions between the copper and starch matrix of different crystalline structures were determined. EPR spectra of the native starches consisted of two different centers of Cu2+. One of them, giving at 293 and 77 K an EPR signal of axial symmetry with a well-resolved hyperfine structure (HFS), was assigned to the Cu2+ -starch complex in which Cu2+ ions strongly interacted with oxygen atoms of the starch matrix. Another Cu2+ species, exhibiting an isotropic signal at 293 K and an axial signal with resolved HFS at 77 K, was attributed to a [Cu(H2O)6]2+ complex freely rotating at room temperature and immobilized at low temperatures. Interaction of Cu2+ with the starch matrix and the relative number of the particular copper species depended on the crystallographic type of starch. Dehydration at 393 K resulted in elimination of the rotating complex signal and decrease of the total intensity of the EPR spectrum caused by clustering of the Cu2+ ions. Freezing at 77 K and thawing led to restoring of the spectrum intensity and reappearing of the signal of the [Cu(H2O)6]2+ complex. This effect, related to liberation of water molecules from the granule semicrystalline growth rings on freezing/thawing, was especially visible for wheat starch, indicating differences in the water retention ability of starch granules of different crystallographic structure.  相似文献   

18.
The effects of starch granules on the rheological behaviour of gels of native potato and high amylopectin potato (HAPP) starches have been studied with small deformation oscillatory rheometry. The influence of granule remnants on the rheological properties of samples treated at 90 °C was evident when compared with samples treated at 140 °C, where no granule remnants were found. The presence of amylose in native potato starch gave to stronger network formation since potato starch gave higher moduli values than HAPP, after both 90 and 140 °C treatments. In addition, amylose may have strengthened the network of HAPP because higher moduli values were obtained when native potato starch was added to the system. The moduli values of the mixtures also increased with increasing polysaccharide concentration in the system, which is due to an increment in the polysaccharide chain contacts and entanglements. Finally, it was found that a mixture of commercial amylose from potato starch and HAPP resulted in lower values of G′ compared to native potato starch. This indicates that the source of amylose is important for the properties in a blend with native amylopectin.  相似文献   

19.
20.
This is the first report on regulation of the isoamylase1 gene to modify the structure of amylopectin and properties of starch by using antisense technology in plants. The reduction of isoamylase1 protein by about 94% in rice endosperm changed amylopectin into a water-insoluble modified amylopectin and a water-soluble polyglucan (WSP). As compared with wild-type amylopectin, the modified amylopectin had more short chains with a degree of polymerization of 5-12, while their molecular sizes were similar. The WSP, which structurally resembled the phytoglycogen in isoamylase-deficient sugary-1 mutants, accounted for about 16% of the total alpha-polyglucans in antisense endosperm, and it was distributed throughout the whole endosperm unlike in sugary-1 mutant. The reduction of isoamylase activity markedly lowered the gelatinization temperature from 54 to 43 degrees C and the viscosity, and modified X-ray diffraction pattern and the granule morphology of the starch. The activity of pullulanase, the other type of starch debranching enzyme, in the antisense endosperm was similar to that in wild-type, whereas it is deficient in sugary-1 mutants. These results indicate that the isoamylase1 is essential for amylopectin biosynthesis in rice endosperm, and that alteration of the isoamylase activity is an effective means to modify the physicochemical properties and granular structure of starch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号