首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Inorganica chimica acta》1988,153(2):119-122
Five chalcogen-coordinated bis(η5-cyclopentadienyl)titanium(IV) chalcogenolates were tested against fluid Ehrlich ascites tumor for antitumor properties: the titanocene phenolates (C5H5)2TiCl(2,4,6-OC6H2Cl3) (I) and (C5H5)2Ti(OC6F5)2 (II); the titanocene thiophenolate (C5H5)2Ti(SC6F5)2 (III); the titanocene dithiolene chelate (C5H5)2Ti[cis-1,2-S2C2 (CN)2] (IV); and the titanocene selenophenolate (C5H5)2TiCl(SeC6H5) (V). The best antitumor activity and an optimum cure rate of 100% were observed in the case of the pentafluorophenyl derivatives II and III, followed by IV and V which induced cure rates of 90 and 80% respectively. These results confirm that bis(η5-cyclopentadienyl)titanium(IV) diacido complexes can be widely varied at the position of the acido ligands without loss of antitumor potency. The titanocene derivatives described in the present study are the first neutral mercapto and seleno titanocene derivatives for which strong antiproliferative properties have been shown.  相似文献   

2.
《Inorganica chimica acta》2001,312(1-2):221-225
[(CN)5PtTl(CN)n]n (n=0–3, complexes IIV) have been studied computationally using quasi-relativistic gradient-corrected density functional theory. Good agreement is obtained with previous EXAFS and Raman data for complexes IIIV, but calculations significantly overestimate the PtTl bond length and underestimate ν(PtTl) for complex I. The addition of co-ordinating water molecules to the thallium atom in complexes IIII has little effect on complexes II and III, but significantly shortens the PtTl bond in complex I, bringing it into excellent agreement with experiment. The bond length shortening is traced to intramolecular hydrogen bonding. The total molecular bonding energies of hydrated I and I′ (in which the axial ligands on the thallium and platinum atoms are interchanged) are found to be very similar to one another, suggesting that complex I might exist as a mixture of isomers in solution.  相似文献   

3.
The crystal structure of the complexes (I)Ni[C11N8N2(OH)2]2SO4, (II) Cu[C11H8N2(OH)2]2Cl2· 4H2O and (III) Cu[C11H8N2(OH)2]2(NO3)2·2H2O have been determined by three-dimensional X-ray analysis methods. Crystal data are: (I), monoclinic, space group C2/c, Z = 4, a = 19.666(4), b = 7.994(2), c = 16.045(6) /rA, /gb = 111.231(9)°, (II), monoclinic, space group C2/c, Z = 4, a = 14.504(4), b = 12.333(8), c = 14.630(3) Å, /gb = 90.92°; and (IIl), monoclinic, space group P21/n, Z = 2, a = 7.601(5), b = 11.977(4), c = 14.463(6) Å, β = 93.10(8)°. These structural investigations clearly demonstrate that in each case hydration occurs across the ketone double bond in the ligand and that the resulting hydroxyl group coordinates to the metal. Two di-2-pyridyl ketone ligands are thus bonded to the metal atom in a tridentate fashion. In the nickel complex (I), all six coordination interactions appear to have approximately the same strength. However, in the copper complexes (II) and (III), the pyridyl nitrogens are strongly coordinating to the metal in the equatorial plane, while the hydroxyl groups are more weakly coordinating in the axial direction. The metal to ligand bond distances are: (I) dNi−O = 2.098(4), dNiN = 2.062(4), 2.087(4) Å, (II) dCuO = 2.465(5), dCuN = 1.994(5), 2.006(5) Å, (III) dCuO = 2.464(5), dCuN = 1.990(5), 2.036(5) Å. The neutral diol that results from hydrolysis of di-2-pyridyl ketone is stabilized by coordination to the metal and such coordination is little affected by changes in the metal, the anion or the extent of hydration.  相似文献   

4.
《Inorganica chimica acta》1988,148(2):255-260
Arytellurol complexes [PtCl(TeAr)(PPh3)2] (I) and [Pt(TeAr)2(PPh3)2] (II) are readily obtained from cis-[PtCl2(PPh)3)2] and NaTeAr (Ar = C6H5, 4-CH3OC6H4 and 4-CH3CH2OC6H4) in ethanolbenzene at room temperature. 31P NMR spectra of (I) and (II) indicate their trans configuration in solution. Metathetical reactions between I (Ar = 4-CH3OC6H4) and NaX (X = I, Br, SCN) occur in methanol to give [Pt(X)(TeC6H4OCH3-4)(PPh3)2]. 1H NMR shows that equimolar proportions of NaTeC6H5, NaTeC6H4OCH2CH3-4 and cis-[PtCl2(PPh3)2] give a mixture of three complexes: II, Ar = C6H5; II, Ar = 4-CH3CH2OC6H4; and [Pt(TeC6H5)(TeC6H4OCH2CH3-4)(PPh3)2]. Polymeric complexes [PtCl(TeAr)]n (III) and [Pt(TeAr)2]n (IV) result from reaction between K2[PtCl4] and NaTeAr in aqueaous ethanol. They react with excess of PPh3 in CDCl3 to yield monomeric complexes I and II respectively which were characterized in situ by 1H and 31P NMR of the reaction mixtures. IR spectra indicate the presence of bridging chloride ligands in III. An alternating chloride and tellurol bridged chain structure for III and a tellurol bridged for IV have been proposed. Reaction between equimolar amounts of III and PPh3 in dichloromethane yielded a tellurol bridged dimeric complex [PtCl(μ-TeAr)(PPh3)]2 (V) with terminal chloride ligand as suggested by IR study. Ethanolic solutions of diarylditellurides also react readily with an aqueous solution of K2[PtCl4] at 10 °C to give complexes for which the structure trans-[PtCl2(ArTeTeAr)2] (VI) is suggested from their elemental analyses, IR, Raman (in one case only), 1H, 125Te (in one case only), and 195Pt NMR spectra and reactions with triphenylphosphine which liberated free ditellurides. At 40 °C or above the same ditellurides form polymeric complexes III with K2[PtCl4] in aquaeous ethanol.  相似文献   

5.
The title compound, I, crystallizes in the monoclinic space group P21 with cell constants: a = 6.599(3), b = 11.121(2), c = 8.375(1) Å and β = 106.35(2)°; V = 589.74 Å3 and D(calc; Z = 2) = 1.974 g cm−3. The compound is isomorphous and isostructural with its Co analogue. A total of 2982 data were collected over the range of 4°  20  70°; of these, 2537 (independent and with I ⩾ 3σ(I)) were used in the structural analysis. Data were corrected for absorption (μ = 16.6 cm−1) and the relative transmission coefficients ranged from 1.000 to 0.9504. Refinement was carried out for both enantiomeric configurations and the crystal used was found to contain cations with Δ(λδ) absolute configuration. The final R(F) and Rw(F) residuals were, respectively 0.0220 and 0.0239 for (−−−; i.e.Δ(λδ)) and 0.0231 AND 0.0317 FOR (+++; i.e.Λ(δλ)). Thus, the former was selected as correct for our specimen.In the case of I, as well as in the Co derivative [cis-Co(en)2(NO2)2]Cl (II), the conformation of one of the rings is opposite that expected for the lowest energy conformation, which in the current case should be Δ(λλ)).The RhN(NO)2 distances are 2.020(2) and 2.010(2) Å, while the RhN(amine) distances, trans to the NO2 ligands are 2.085(2) and 2.093(1) Å, values distinctly longer than the other two RhN distances (2.064(1) and 2.068(1) Å). The latter are the RhN distances to the terminalNH2 ligands located trans to each other. Thus, we observe a trans effect, which is more pronounced in I than in II, and which is of comparable magnitude to that observed in the case of the trien derivative, [cis-α-Rh(trien)(NO2)2]Cl(III).Parallel with an increase in metalN distances in going from [cis-α-Co(trien)NO2)2]Cl·H2) (IV) to (III) is an increase in the torsional angles of the outer rings (NCCN) of about 10°. Comparison of these parameters in I and II reveal that this change is not so marked for this pair since in I they are −54.9° and 52.8° while in II they are 50.2° and −48.1°; i.e. a change of only 4°. This important difference between trien and en derivatives is caused by the presence of the central five-membered ring, which for compounds III and IV remains largely unchanged, except for the metalN distances.The NO bond lengths are 1.244(3), 1.220)(2), 1.237(2) and 1.211(2) Å, which are similar to those found for the analogous Co isomer. The CN bond lengths are 1.492(3), 1.474(2), 1.486(2) and 1.475(2) Å, while the CC bonds are 1.509(3) and 1.524(3) Å. These values are also comparable with those obtained for the Co isomer and, in fact, the pattern of the bonds is nearly identical in both, including the common feature of having a longer CC bond for the en ring with the conformation opposite that expected.As was the case with the Co analogue, the Cl anion is associated with the hydrogens of the secondary nitrogen (trans to the −NO2) ligands, the Cl…H7 distance being 2.18(3) Å and the <Cl…H7N2 = 163°.  相似文献   

6.
《Inorganica chimica acta》1988,149(2):259-264
The bis(N-alkylsalicylaldiminato)nickel(II) complexes Ni(R-sal)2 with R = CH(CH2OH)CH(OH)Ph (I), R = CH(CH3)CH(OH)Ph (II) and R = CH2CH2Ph (III; Ph = phenyl) were prepared and characterized. In the solid state I and II are paramagnetic (μ = 3.2 and 3.3 BM at 20 °C, respectively), whereas III is diamagnetic. It follows from the UV-Vis spectra that in acetone solution I is six-coordinate octahedral and III is four-coordinate planar, the spectrum of II showing characteristics of both modes of coordination. Vis spectrophotometry and stopped-flow spectrophotometry were applied to study the kinetics of ligand substitution in I–III by H2salen (= N,N′-disalicylidene-ethylenediamine) in the solvent acetone at different temperatures. The kinetics follow a second-order rate law, rate = k[H2-salen] [complex]. At 20 °C the sequence of rate constants is k(III):k(II):k(I) = 11 850:40.6:1. The activation parameters are ΔH(I) = 112, ΔH(II) = 40.7, ΔH(III) = 35.7 kJ mol−1 and ΔS(I) = 92, ΔS(II) = −103, ΔS(III) = −89 J K−1 mol−1. The enormous difference in rate between complexes I, II and III, which is less pronounced in methanol, is attributed to the existence of a fast equilibrium planar ⇌ octahedral, which is established in the case of I and II by intramolecular octahedral coordination through the hydroxyl groups present in the organic group R. An A-mechanism is suggested to control the substitution in the sense that the entering ligand attacks the four-coordinate planar complex, the octahedral complex being kinetically inert.  相似文献   

7.
The crystal structures of two modifications of gadoliniumdicyclopentadienidebromide, [Gd(C5H5)2Br]2 (I) and 1[Gd(C5H5)2Br] (II) have been determined from X-ray diffraction data. I crystallizes in the [Sc(C5H5)2Cl]2-type structure, space group P21/c, with a=14.110(3), b=16.488(3), c= 13.765(3) Å, β=93.25(2)°, V=3197(2) Å3, and Dc= 2.289 g cm−3 for Z=6 molecules. II crystallizes in space group P21/c with a=5.946(7), b=8.447(5), c=20.239(9) Å, β=90.11(4)°, V=1020(2) Å3, Dc=2.392 g cm−3 for Z=4 formula units. The structures have been refined by full matrix least-squares techniques to conventional R factors of 0.034 for 3014 (I) and 1964 (II) reflections (with I>2σ(I)). I consists of dimers with two bromine bridges (mean GdBr 2.872 Å). II has a double chain structure with alternating juxtaposition of gadolinium and bromine atoms (GdBr 2.912 Å (once) and 3.133 Å (twice)). The arrangement of the C5H5 groups with regard to the metal η5 fashion) is nearly identical in I and II (mean GdC 2.63(1) Å (I) and 2.62(1) Å (II)). Single crystals of I and II are obtained by sublimation at different temperatures. The formation of both modifications is discussed as to its dependence on the state of the gaseous phase equilibrium [Gd(C5H5)2Br]2 ⇄ 2Gd(C5H5)2Br. Obviously, I crystallizes from gaseous phase dimers while II forms from the monomers.  相似文献   

8.
《Inorganica chimica acta》1987,132(2):217-222
XPd(μ-dppm)2Pt(C6F5) (X = Cl (I), Br (II)) have been prepared by reacting Pd2(dba)3·CHCl3 and PtX- (C6F5)(η1-dppm)2. Reaction of complex I with SnCl2 gives the SnCl3 derivative, whilst ligands L (PPh3, P(OPh)3, SbPh3) render the cationic complexes. The species R2N+, SO2 or MeOOC)CCCOOMe insert into the PdPt bond of I to give A-frame Pd(II)- Pt(II) complexes. The reactions of CIPd(μ-dppm)2- Pt(C6F5) with isonitriles CNR (R = p-Tol, Cy) lead to products containing either terminal or inserted isocyanide or both.  相似文献   

9.
Five new gallium arsenate compounds [C2N2H10][Ga(H2AsO4)(HAsO4)2]·H2O, I; [C2N2H10][Ga(OH)(AsO4)]2, II; [C2N2H10][GaF(AsO4)]2, III; [C3N2H12][Ga(OH)(AsO4)]2, IV; [Ga2F3(AsO4)(HAsO4)]·2H3O, V, have been synthesized under hydrothermal conditions and the structures determined employing single crystal X-ray diffraction studies. All the structures consist of octahedral gallium and tetrahedral arsenate units connected together forming a hierarchy of structures. Thus, one- (I), two- (II and IV) and three-dimensionally (III and V) extended structures have been observed. The Ga-O(H)/F-Ga connectivity in some of the structures suggests the coordination requirements posed by the octahedral gallium in these compounds. The observation of only one type of secondary building unit in the structures of III (SBU-4) and V (spiro-5) is unique and noteworthy. All the compounds have been characterized by a variety of techniques that include powder XRD, IR, and TGA.  相似文献   

10.
《Inorganica chimica acta》1988,154(2):183-188
Polymeric complexes of formula [PdCl(TeAr)]n (I) and [Pd(TeAr)2]n (II) are readily obtained by the reaction between Na2[PdCl4] and NaTeAr (ArC6H5, C6H4OCH3−4 and C6H4OCH2CH3−4) in ethanol at room temperature. Chemical and far infrared spectral evidences support alternating chloride and tellurol bridges in I and tellurol bridges in II. While the reaction of I (AtC6H4OCH3−4) with PPh3 in stoichiometric amount results in splitting of chloride bridges and formation of a tellurol bridged dimeric complex [PdCl(TeC6H4OCH3−4)(PPh3)]2 (III), with excess of PPh3, cleavage of both chloride and tellurol bridges leads to the formation of a monomeric compound [PdCl(TeC6H4OCH3−4)(PPh3)2] (IV). Furthermore, the reaction of I (Ar C6H4OCH2CH3−4) with 1,2-bis(diphenyl phosphino)ethane in equimolar ratio also resulted in a monomeric compound [(PdCl(TeC6H4OCH2CH3−4)(diphos)] (V). The complex III (ArC6H4OCH2CH3−4) is also prepared by the reaction between Pd(PPh3)2Cl2 and Ph3SnTeC6H4OCH2CH3−4 in 1:1 molar ratio or between Pd2Cl4(PPh3)2 and Ph3SnTeC6H4OCH2CH3−4 in 1:2 molar ratio in benzene at room temperature. Sodium tetrachloropalladate reacts readily with diarylditellurides in ethanol at 0 °C to form dimeric complexes [PdCl2(ArTeTeAr)]2 (VI). However, at 40 °C or above the same ditellurides form polymeric complexes I with Na2[PdCl4] in ethanol. The complex VI is also obtained by the reaction of Pd(PhCN)2Cl2 with Te2Ar2 in benzene at room temperature. The complexes were characterized by elemental analysis, IR, Raman and 1H NMR spectra and, where possible, by conductivity measurements and molecular weight determinations.  相似文献   

11.
New dinuclear TiIV and TiIII complexes with the calix[4]arene ligand C28H20O4H4 (H4L) have been isolated from the reaction of Ti(NMe2)4, H4L, and Na (or KC8) in THF. X-ray analyses revealed a similar core structure for the two complexes Na4(THF)8[TiIV 2(μ-O)2L2] (1) and K4(THF)8[TiIII 2(μ-NMe2)2L2] (2). Two titanium atoms are bridged by two oxygen atoms in 1 and by two dimethylamido groups in 2 and are also supported by two deprotonated calix[4]arene ligands in a cone conformation. This resulted in a similar Ti?Ti separation of about 3.29 Å in 1 and 3.28 Å in 2 and in a distorted octahedral environment for each Ti center in both complexes. In contrast, in a novel complex 3, Na2(THF)6[TiIII 2L2], two TiIII atoms are supported only by two deprotonated ligands. This results in a five-coordinate environment for both titanium(III) centers with the separation between them being 3.133(1) Å.  相似文献   

12.
Coordination compounds of chelating 8-methylthioquinoline (MTQ) with the complex fragments ReI(CO)3Cl, [RuII(bpy)2]2+, [RhIII(C5Me5)Cl]+, [IrIII(C5Me5)Cl]+, and PtIVMe4 were synthesized and structurally characterized. Whereas the ruthenium(II) complex displays the strongest preference of bonding to N versus S, the compound (MTQ)PtMe4 shows the most balanced metal-donor bonding within the chelate ring due to a relatively short bond to S (2.319 Å) versus N (2.150 Å). The complex fac-(MTQ)Re(CO)3Cl exhibits a particularly long metal-sulfur bond at 2.472 Å. Cyclic voltammetry of [(MTQ)Ru(bpy)2](PF6)2 reveals one reversible oxidation to RuIII and three closely spaced reduction waves for the coordinated ligands. In comparison with the imine/thioether chelate ligand 1-methyl-2-(methylthiomethyl)-1H-benzimidazole (mmb) the MTQ ligand with its more rigid chelate setting N(sp2)-C(sp2)-C(sp2)-S forms generally shorter M-S bonds and displays stronger π acceptor behaviour.  相似文献   

13.
Reaction of the potassium salts of (EtO)2P(O)CH2C6H4-4-(NHC(S)NHP(S)(OiPr)2) (HLI), (CH2NHC(S)NHP(S)(OiPr)2)2 (H2LII) or cyclam(C(S)NHP(S)(OiPr)2)4 (H4LIII) with [Cu(PPh3)3I] or a mixture of CuI and Ph2P(CH2)1-3PPh2 or Ph2P(C5H4FeC5H4)PPh2 in aqueous EtOH/CH2Cl2 leads to [Cu(PPh3)LI] (1), [Cu2(Ph2PCH2PPh2)2LII] (2), [Cu{Ph2P(CH2)2PPh2}LI] (3), [Cu{Ph2P(CH2)3PPh2}LI] (4), [Cu{Ph2P(C5H4FeC5H4)PPh2}LI] (5), [Cu2(PPh3)2LII] (6), [Cu2(Ph2PCH2PPh2)LII] (7), [Cu2{Ph2P(CH2)2PPh2}2LII] (8), [Cu2{Ph2P(CH2)3PPh2}2LII] (9), [Cu2{Ph2P(C5H4FeC5H4)PPh2}2LII] (10), [Cu8(Ph2PCH2PPh2)8LIIII4] (11), [Cu4{Ph2P(CH2)2PPh2}4LIII] (12), [Cu4{Ph2P(CH2)3PPh2}4LIII] (13) or [Cu4{Ph2P(C5H4FeC5H4)PPh2}4LIII] (14) complexes. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy; their compositions were examined by microanalysis. The luminescent properties of the complexes 1-14 in the solid state are reported.  相似文献   

14.
The crystal structures of the title compounds Sb(C9H6NO)2(S2COC2H5) (1) and Sb(S2COC2H5)3 (2) have been determined by three dimensional X-ray diffraction techniques and refined by a least squares method; final R 0.049 for 2911 reflections [I ? 3σ(I)] for (1) and R 0.047, Rw 0.046 for 846 reflections [I ? 2σ(I)] for (2). Crystals of (1) are triclinic, space group P1, a = 10.825(2), b = 11.131(2), c = 8.911(1) Å, α = 109.45(1), β = 95.92(1) and γ = 93.02(1)° with Z = 2. Crystals of (2) are rhombohedral, space group R3, arhomb = 10.138(3) Å and α = 103.43(2)°. The environment of the Sb atom in (1) is based on a pentagonal bipyramidal geometry consisting of the six donor atoms of the three chelating ligands and a stereochemically active lone-pair of electrons which occupies the remaining axial position. The xanthate ligand chelates the Sb atom almost symmetrically with two long SbS bonds of 3.059(2) and 3.171(2) Å. In contrast the xanthate ligands in (2) chelate the Sb atom with asymmetric SbS bonds of 2.511(2) and 3.002(3) Å.  相似文献   

15.
Five new open-framework compounds of gallium have been synthesized by hydrothermal methods and their structures determined by single crystal X-ray diffraction studies. The compounds, [C8N4H26][Ga6F4(PO4)6], I, [C5N3H11][Ga3F2(PO4)3]·H2O, II, [C6N3H19][Ga4(C2O4)(PO4)4(H2PO4)]·2H2O, III, [Ga2F3(HPO4)(PO4)]·2H3O, IV, and [C3N2H5]2[Ga4(H2O)3(HPO3)7], V, possess three-dimensional structures. All the compounds are formed by the connectivity between the Ga polyhedra and phosphite/phosphate units. The observation of SBU-6 (I and II) and spiro-5 (IV) secondary building units (SBUs) are noteworthy. The flexibility of the formation of gallium phosphate frameworks has been established by the isolation of two related structures (I and II) from the same SBU units but different organic amines. Some of the present structures have close resemblance to the gallium phosphate phases known earlier. The compounds have been characterized by CHN analysis, powder XRD, IR, and TGA.  相似文献   

16.
Reaction of diphosphine complexes [IrCl{(C6F5)2P(CH2)2P(C6F5)2}]2 (I) and [IrCl(dppe)]2 (II) with coordinating solvents (acetonitrile, acetone, DMSO) leads to several square-planar complexes of the type [IrCl(diphosphine)(solvent)] which are stable only in solution ([IrCl{(C6F5)2P(CH2)2P(C6F5)2}(NCCH3)] (III) and [IrCl{(C6F5)2P(CH2)2P(C6F5)2}(acetone)], IV) and/or can be detected only under APCI-MS/MS conditions ([IrCl(dppe)(solvent)]). When III is allowed to react with CO for at least 30 min, the unusual five coordinated trans-dicarbonyl complex [IrCl{(C6F5)2P(CH2)2P(C6F5)2}(CO)2] (Vb) is formed, as characterized by 1H and 31P NMR, FT-IR, TGA and APCI-MS/MS.A new and stable square-planar complex [Ir(OCH3)(cod)(PClPh2)] (IX) was also synthesized. Its APCI-MS/MS spectrum is simple and unique as it shows exclusively the loss of a neutral C3H2 species. Along with the APCI-MS and APCI-MS/MS analyses, whenever it was possible all complexes were also characterized by 1H and 31P NMR spectroscopy.  相似文献   

17.
A series of para-substituted triaryltin(pentacarbonyl)manganese(I) compounds [(p-XC6H4)3SnMn(CO)5: II, X=CH3; III, X=CH3O; IV, X=CH3S; V, X=F; VI, X=Cl; VII, X=CH3S(O2)] is reported for comparison with the known phenyl analogue I. IR data [ν(CO)] as well as complete 119Sn/55Mn/13C solution NMR results are given for I-VII. Chemical shifts, 119Sn versus 55Mn, except I, correlate well, but have differing single parameter (SP) correlations, 119Sn versus σI and 55Mn versus σ°p. These results are compared with previous SP studies of the 119Sn solution NMR spectra of the series, (p-XC6H4)4Sn and (p-XC6H4)3SnY (Y=Cl, Br, I). Full crystal structures are reported for compounds II-VI. All are similar to that of I, with the Mn(CO)5 moiety being a distorted tetragonal pyramid, and having a quasi-mirror plane through the central C4MnSnC3 skeleton. The Ar3Sn are distorted trigonal propellers with ring torsion angles in the range 30-80°, the exception being IV with one torsion angle of 22°.  相似文献   

18.
Syntheses, structural studies from single-crystal X-ray diffraction and thermal behaviour of (C4H12N2)[MII(H2O)6](SO4)2 with MII = Mn, Ni, Fe and Cu are reported. All compounds crystallise in monoclinic system, space group P21/n. The two isotypical compounds (C4H12N2)[Mn(H2O)6](SO4)2 (I) and (C4H12N2)[Ni(H2O)6](SO4)2 (II), are isostructural with the related cobalt and zinc phases, while the isotypical sulfates (C4H12N2)[Fe(H2O)6](SO4)2 (III) and (C4H12N2)[Cu(H2O)6](SO4)2 (IV) belong to another structure type. The three-dimensional structure networks for the four compounds consist of isolated [MII(H2O)6]2+ and (C4H12N2)2+ cations and (SO4)2− anions linked by hydrogen-bonds only. The thermal behaviour of the precursors has been studied by powder thermodiffractometry and thermogravimetric analyses. The first stages of dehydration are discussed with respect to the hydrogen bonds within the compounds.  相似文献   

19.
《Inorganica chimica acta》2001,312(1-2):139-150
The reactions of cis-1,1′-[η55-(C5H3CO2Me)2]Mo2(CO)6 (1), in the presence of 1 equiv. of Me3NO, and [(η5-C5H4CO2Me)Mo(CO)3]2 (2) with dppe produce CO labilization and formation of the dinuclear zwitterions trans-1,1′-[η55-(C5H3CO2Me)2]Mo2(CO)5(dppe) (3) and disproportionation species [(η5-C5H4CO2Me)Mo(CO)2(dppe)]+ [(η5-C5H4CO2Me)Mo(CO)3] (4), respectively. Using the same method, the reactions of trans-1,1′-[η55-(C5H3CO2Me)2]Mo2(CO)6I2 and (η5-C5H4CO2Me)Mo(CO)3I with PPh3 in the presence of 1 and 2 equiv. of Me3NO yield trans-1,1′-[η55-(C5H3CO2Me)2]Mo2(CO)4(PPh3)2I2 (5) and (η5-C5H4CO2Me)Mo(CO)2(PPh3)I (6). The reactions of the several anionic carbonyl species {trans-1,1′-[η55-(C5H3CO2Me)2]Mo2(CO)6}2−, [(η55-C10H8)W2(CO)6]2− and [(η5-C5H4CO2Me)Mo(CO)3] with S2Ph2 give rise to the thiolate–fulvalene complexes cis-1,1′-[η55-(C5H3CO2Me)2]Mo2(CO)4(μ-SPh)2 (7) and (η55-C10H8)W2(CO)6(SPh)2 (8) and the thiolate-bridged dimer [(η5-C5H4CO2Me)Mo(CO)(μ-SPh)]2 (9). Treatment of 6 with 1 equiv. of HCCCCH and with (η5-C5H5)Mo(CO)(dppe)(CCCCH), in the presence of CuI at room temperature, afford the cyclopentadiene complexes (η5-C5H4CO2Me)Mo(CO)2(PPh3)(CCCCH) (10) and (η5-C5H4CO2Me)(PPh3)(CO)2Mo(CCCC)Mo(CO)(dppe)(η5-C5H5) (11), respectively. The reaction of (η5-C5H5)Mo(CO)(dppe)(CCCCH) with Co2(CO)8 yields [Co2{μ-HC2CC[Mo(CO)(dppe)(η5-C5H5)]}(CO)6] (12). All the new compounds have been characterized by analytical and spectroscopic methods.  相似文献   

20.
A series of novel asymmetric binuclear titanocenes linked with alkyl benzyl ethers p-[(C5H5TiCl2)C5H4CH2]C6H4O(CH2)n[C5H4(TiCl2C5H5)] (n = 2-5) (13-16) have been synthesized by treating p-(LiC5H4CH2)C6H4O(CH2)n(C5H4Li) (n = 2-5) (9-12) with C5H5TiCl3. The new complexes have been characterized by elemental analysis and NMR spectra. Their catalytic activity for ethylene polymerization was investigated in the presence of aluminoxane (MAO). The results show that 13-16 are efficient catalysts for producing polyethylene (PE) with a broad molecular weight distribution (MWD). Their catalytic activity is highly dependent on the length of the alkyl chain and the polymerization conditions. A longer alkyl chain increases the catalytic activity, whereas the molecular weight of the produced polyethylene decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号