首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gymnotiform electric fish emit an electric organ discharge that, in several species, is sexually dimorphic and functions in gender recognition. In addition, some species produce frequency modulations of the electric organ discharge, known as chirps, that are displayed during aggression and courtship. We report that two congeneric species (Apteronotus leptorhynchus and A. albifrons) differ in the expression of sexual dimorphism in these signals. In A. leptorhynchus, males chirp more than females, but in A. albifrons chirping is monomorphic. The gonadosomatic index and plasma levels of 11-ketotestosterone were equivalent in both species, suggesting that they were in similar reproductive condition. Corresponding to this difference in dimorphism, A. leptorhynchus increases chirping in response to androgens, but chirping in A. albifrons is insensitive to implants of testosterone, dihydrotestosterone or 11-ketotestosterone. Species also differ in the sexual dimorphism and androgen sensitivity of electric organ discharge frequency. In A. leptorhynchus, males discharge at higher frequencies than females, and androgens increase electric organ discharge frequency. In A.␣albifrons, males discharge at lower frequencies than females, and androgens decrease electric organ discharge frequency. Thus, in both chirping and electric organ discharge frequency, evolutionary changes in the presence or direction of sexual dimorphism have been accompanied and perhaps caused by changes in the androgen regulation of the electric organ discharge. Accepted: 18 February 1998  相似文献   

2.
Mating system, social structure and reproductive behaviour of the gobiid fish Trimma okinawae were studied at Akamizu, Kagoshima, Japan. Mating system of this species is polygyny. There were two types of habitat-related distribution patterns of male and female home ranges: females have home ranges outside a small territory of the male; female home ranges are covered by male territory. Spawnings take place with a cycle of four to five days during the spawning season of June to Sept. In the morning of the day of spawning, males stay at the spawning sites. Females visit the site and spawn with the male. On days between spawnings males exhibit courtship displays at female home ranges. Higher reproductive success is not connected with frequency of such courting of the male, but with male size. The largest female of a social unit changes into a male when the dominant male is removed, which shows that T. okinawae is a hermaphrodite.  相似文献   

3.
Brown ghosts, Apteronotus leptorhynchus, are weakly electric gymnotiform fish whose wave-like electric organ discharges are distinguished by their enormous degree of regularity. Despite this constancy, two major types of transient electric organ discharge modulations occur: gradual frequency rises, which are characterized by a relatively fast increase in electric organ discharge frequency and a slow return to baseline frequency; and chirps, brief and complex frequency and amplitude modulations. Although in spontaneously generated gradual frequency rises both duration and amount of the frequency increase are highly variable, no distinct subtypes appear to exist. This contrasts with spontaneously generated chirps which could be divided into four "natural" subtypes based on duration, amount of frequency increase and amplitude reduction, and time-course of the frequency change. Under non-evoked conditions, gradual frequency rises and chirps occur rather rarely. External stimulation with an electrical sine wave mimicking the electric field of a neighboring fish leads to a dramatic increase in the rate of chirping not only during the 30 s of stimulation, but also in the period immediately following the stimulation. The rate of occurrence of gradual frequency rises is, however, unaffected by such a stimulation regime.  相似文献   

4.
Brown ghost knife fish, Apteronotus leptorhynchus, produce a continuous electric organ discharge (EOD) that they use for communication. While interacting aggressively, males also emit brief EOD modulations termed chirps. The simplicity of this behaior and its underlying neural circuitry has made it an important model system in neuroethology. Chirping is typically assayed by confining a fish in a tube (‘chirp chamber’) and presenting it with sine wave electrical stimuli that partially mimic EODs of other fish. We presented male fish with progressively more realistic social stimuli to examine whether some of the stimulus complexities during dyadic interaction influence the production of chirps. In a chirp chamber, fish chirped less to a recording of an EOD containing chirps than to a recording of an EOD alone and to sine wave stimuli. Free‐swimming fish chirped more to stimulus fish than to sine wave stimuli presented through electrodes. Fish chirped more when interacting directly than when interacting across a perforated barrier. Together, these studies demonstrate that the presence of chirps, electric field complexity, and/or non‐electric social stimuli are important in eliciting chirp production in brown ghosts.  相似文献   

5.
Brachyhypopomus pinnicaudatus (pulse-type weakly electric fish) is a gregarious species that displays reproductive behavior and agonistic encounters between males only during the breeding season. During social interactions, in addition to its basal electric organ discharge (EOD), fish emit social electric signals (SESs) in the contexts of reproduction and intrasexual aggression. We reproduced natural behavior in laboratory settings: SESs recorded in the field are indistinguishable from those observed in our experimental setup. SESs are nocturnal, change seasonally and exhibit sexual dimorphism. This study provides an exhaustive characterization and classification of SESs produced by males and females during the breeding season. In male–female dyads, males produce accelerations and chirps while females interrupt their EODs. The same SESs are observed in male–male dyads. We present a novel, thorough classification of male chirps into four independent types (A, B, C, and M) based on their duration and internal structure. The type M chirp is only observed in male–male dyads. Chirps and interruptions, both in male–female and male–male dyads, are emitted in bouts, which are also grouped throughout the night. Our data suggest the existence of a sophisticated electric dialog during reproductive and aggressive interaction whose precise timing and behavioral significance are being investigated.  相似文献   

6.
Here, we report a species difference in the strength and duration of long-term sensorimotor adaptation in the electromotor output of weakly electric fish. The adaptation is produced by changes in intrinsic excitability in the electromotor pacemaker nucleus; this change is a form of memory that correlates with social structure. A weakly electric fish may be jammed by a similar electric organ discharge (EOD) frequency of another fish and prevents jamming by transiently raising its own emission frequency, a behavior called the jamming avoidance response (JAR). The JAR requires activation of NMDA receptors, and prolonged JAR performance results in long-term frequency elevation (LTFE) of a fish’s EOD frequency for many hours after the jamming stimulus. We find that LTFE is stronger in a shoaling species (Eigenmannia virescens) with a higher probability of encountering jamming conspecifics, when compared to a solitary species (Apteronotus leptorhynchus). Additionally, LTFE persists in Eigenmannia, whereas, it decays over 5–9 h in Apteronotus.  相似文献   

7.
In this study we examined electrocommunication behavior in Sternarchogiton nattereri (Apteronotidae), a weakly electric fish from South America. We focused on variation between females and males lacking external dentition and used playbacks of simulated conspecifics to elicit chirps (modulations of their electric organ discharge, EOD). Chirp responses were not affected by the frequency of the playback stimulus. EOD frequency, chirp rate, and chirp duration were not sexually dimorphic; however, the amount of chirp frequency modulation was significantly greater in toothless males than in females. These results reinforce that sex differences in chirp structure are highly diverse and widespread in the Apteronotidae.  相似文献   

8.
9.
Brown ghost knife fish, Apteronotus leptorhynchus, produce sexually dimorphic, androgen-sensitive electrocommunication signals termed chirps. The androgen regulation of chirping has been studied previously by administering exogenous androgens to females and measuring the chirping response to artificial electrical signals. The present study examined the production of chirps during dyadic interactions of fish and correlated chirp rate with endogenous levels of one particular androgen, 11-ketotestosterone (11KT). Eight males and four females were exposed to short-term (5-min) interactions in both same-sex and opposite-sex dyads. Twenty-four hours after all behavioral tests, fish were bled for determination of plasma 11KT levels. Males and females differed in both their production of chirps and their ability to elicit chirps from other fish: males chirped about 20-30 times more often than females and elicited 2-4 times as many chirps as females. Among males, chirp rate was correlated positively with plasma 11KT, electric organ discharge frequency, and body size. Combined with results from experimental manipulation of androgen levels, these results support the hypothesis that endogenous 11KT levels influence electrocommunication behavior during interactions between two male fish.  相似文献   

10.
Serotonin modulates agonistic and reproductive behavior across vertebrate species. 5HT1A and 5HT1B receptors mediate many serotonergic effects on social behavior, but other receptors, including 5HT2 receptors, may also contribute. We investigated serotonergic regulation of electrocommunication signals in the weakly electric fish Apteronotus leptorhynchus. During social interactions, these fish modulate their electric organ discharges (EODs) to produce signals known as chirps. Males chirp more than females and produce two chirp types. Males produce high-frequency chirps as courtship signals; whereas both sexes produce low-frequency chirps during same-sex interactions. Serotonergic innervation of the prepacemaker nucleus, which controls chirping, is more robust in females than males. Serotonin inhibits chirping and may contribute to sexual dimorphism and individual variation in chirping. We elicited chirps with EOD playbacks and pharmacologically manipulated serotonin receptors to determine which receptors regulated chirping. We also asked whether serotonin receptor activation generally modulated chirping or more specifically targeted particular chirp types. Agonists and antagonists of 5HT1B/1D receptors (CP-94253 and GR-125743) did not affect chirping. The 5HT1A receptor agonist 8OH-DPAT specifically increased production of high-frequency chirps. The 5HT2 receptor agonist DOI decreased chirping. Receptor antagonists (WAY-100635 and MDL-11939) opposed the effects of their corresponding agonists. These results suggest that serotonergic inhibition of chirping may be mediated by 5HT2 receptors, but that serotonergic activation of 5HT1A receptors specifically increases the production of high-frequency chirps. The enhancement of chirping by 5HT1A receptors may result from interactions with cortisol and/or arginine vasotocin, which similarly enhance chirping and are influenced by 5HT1A activity in other systems.  相似文献   

11.
Energetic demands of social communication signals can constrain signal duration, repetition, and magnitude. The metabolic costs of communication signals are further magnified when they are coupled to active sensory systems that require constant signal generation. Under such circumstances, metabolic stress incurs additional risk because energy shortfalls could degrade sensory system performance as well as the social functions of the communication signal. The weakly electric fish Eigenmannia virescens generates electric organ discharges (EODs) that serve as both active sensory and communication signals. These EODs are maintained at steady frequencies of 200–600 Hz throughout the lifespan, and thus represent a substantial metabolic investment. We investigated the effects of metabolic stress (food deprivation) on EOD amplitude (EODa) and EOD frequency (EODf) in E. virescens and found that only EODa decreases during food deprivation and recovers after restoration of feeding. Cortisol did not alter EODa under any conditions, and plasma cortisol levels were not changed by food deprivation. Both melanocortin hormones and social challenges caused transient EODa increases in both food-deprived and well-fed fish. Intramuscular injections of leptin increased EODa in food-deprived fish but not well-fed fish, identifying leptin as a novel regulator of EODa and suggesting that leptin mediates EODa responses to metabolic stress. The sensitivity of EODa to dietary energy availability likely arises because of the extreme energetic costs of EOD production in E. virescens and also could reflect reproductive strategies of iteroparous species that reduce social signaling and reproduction during periods of stress to later resume reproductive efforts when conditions improve.  相似文献   

12.
Synopis Reproductively developed male fathead minnows, Pimephales promelas, exhibited courtship behaviour in the presence of female conspecifies under laboratory conditions. Male courtship consisted of several distinctive and visually conspicuous behaviours directed toward females, including approach, display, and two contact behaviours, as well as leading behaviour from the female to a suitable spawning site. An ovulated condition in females was not necessary to generate male courtship behaviour; in fact, the amount of courtship exhibited by males may depend inversely on the readiness of females to spawn.  相似文献   

13.
14.
Female communication behaviors are often overlooked by researchers in favor of male behaviors, which are usually more overt and easier to elicit. Very little is known about female electrocommunication behaviors in brown ghost knifefish, a weakly electric wavetype Gymnotiform fish. Most behavioral studies have focused on males, and fish are usually restrained and played a stimulus near their own electric organ discharge frequency to evoke chirps (abrupt short-term frequency rises) or the jamming avoidance response. Our study focuses on categorizing and describing spontaneous and evoked electric organ discharge modulations in free-swimming female fish that were either electrically coupled to tanks containing a conspecific (male or female), or left isolated. Cluster analysis of signals produced under isolated and social conditions revealed three categories of rises: short rise, medium rise and long rise; and one category of frequency decrease (dip). Females produce significantly more short rises when electrically coupled to tanks containing lower-frequency females, and produce more long rises when electrically coupled to tanks containing males. Short rises may have an intrasexual aggressive function, while long rises may serve as an advertisement of status or reproductive condition in intersexual interactions.  相似文献   

15.
Male courtship displays and bright coloration are usually assumedto provide information to females about some aspect of themale's value as a mate. However, in some species, courtshipmay serve another function—namely, indicating the currentpredation risk at the mating site and assuring the female thatit is safe to mate there at this time. We developed this safetyassurance hypothesis (SAH) and tested its predictions in thebluehead wrasse (Thalassoma bifasciatum), a Caribbean reef fish. Females in this species come to males' territories to spawn,and males court each arriving female. Males with larger whiteflank patches court less intensely than less bright males.We show that such males are probably more visible to predatorsand thus need not court so intensely to provide the same degreeof safety assurance to a female. When model lizardfish predatorsare presented at spawning sites, males habituate to them quickly,but newly arriving females who see the predator are expectedto demand more assurance of site safety. Accordingly, and consistentwith the SAH, males court females more intensely (longer averagecourtship bout length) under such circumstances, but maleswith bright flank patches do not increase their courtship asmuch as duller males do. Despite this relatively low intensityof courtship, the spawning rate of bright males does not declinerelative to that of duller males in the presence of a predator,suggesting that bright coloration conveys a differential benefit.Females of species like the bluehead wrasse, who spawn repeatedlyover the course of their life, are expected to be more concernedwith their own risk of mortality during each spawning boutthan with the quality of a particular male. It is in such speciesthat we expect the SAH to be most applicable.  相似文献   

16.
Serranus baldwini (Serranidae), the lantern bass, is a small, gleaning carnivore found in turtle grass and rubble substrates in the Caribbean. Small S. baldwini are simultaneous hermaphrodites, but large members of this species are males. The males patrol territories in which several hermaphrodites reside. Hermaphrodites spawn as females with the resident males and rarely spawn as males themselves. Unlike the pattern in reciprocating hermaphrodites, courtship is largely a male function in S. baldwini. Males are much more active and aggressive than are hermaphrodites. In reciprocally spawning species, interactions among mates are more symmetrical. The behavior patterns found in the serranines reflect the differences in mating systems in a manner similar to that found in other organisms and is consistent with current mating system theory.  相似文献   

17.
The weakly electric fish Apteronotus leptorhynchus produces wave-like electric organ discharges distinguished by a high degree of regularity. Transient amplitude and frequency modulations (“chirps”) can be evoked in males by stimulation with the electric field of a conspecific. During these interactions, the males examined in this study produced six types of chirps, including two novel ones. Stimulation of a test fish with a conspecific at various distances showed that two electrically interacting fish must be within 10 cm of each other to evoke chirping behavior in the neighboring fish. The chirp rate of all but one chirp type elicited by the neighboring fish was found to be negatively correlated with the absolute value of the frequency difference between the two interacting fish, but independent of the sign of this difference. Correlation analysis of the instantaneous rates of chirp occurrence revealed two modes of interactions characterized by reciprocal stimulation and reciprocal inhibition. Further analysis of the temporal relationship between the chirps generated by the two fish during electric interactions showed that the chirps generated by one individual follow the chirps of the other with a short latency of approximately 500–1000 ms. We hypothesize that this “echo response” serves a communicatory function.  相似文献   

18.
Androgens are known to be involved in reproductive behaviours including courtship and aggression. According to the Challenge Hypothesis, androgen activity upregulates male reproductive behaviour seasonally and also modulates short term adaptation of these behaviours in response to social context. In the weakly electric fish, Apteronotus leptorhynchus, 11-ketotestosterone (11-KT) has been previously implicated in the regulation of electrocommunication behaviours that are believed to have roles in both aggression and courtship. Changes in male 11-KT levels were quantified using a non-invasive measurement technique alongside changes in electrocommunication behaviour following environmental cues that simulated the onset of the breeding season. Males showed an increase in mean electric organ discharge frequency (EODf), which is consistent with earlier results showing a female preference for high EODf. A subset of males with high initial EODfs showed increases in both 11-KT and EODf, which provides support for an EODf-based dominance hierarchy in this species. Males housed in social conditions and exposed to breeding conditioning also showed higher overall electric organ discharge frequencies and 11-KT compared to males housed in isolation. Evidence is presented that another type of electrocommunication signal previously implicated in courtship may also serve as an inter-male signal of submission. Our results are consistent with earlier observations that electrocommunication signals produced during inter-male aggression serve in deterring attacks, and their pattern of production further suggested the formation of a dominance hierarchy.  相似文献   

19.
Summary Weakly electric fish (Gymnotiformes) emit quasi-sinusoidal electric organ discharges within speciesspecific frequency ranges. The electrosensory system is organized into 2 parallel pathways which convey either the amplitude or the timing of each electric organ discharge cycle. Two putative metabolic activity markers, calbindin D 28K and cytochrome c oxidase, and their relationship with the electrosensory nuclei of high- and low-frequency species were studied. Calbindin is found in the somata of the spherical neurons in the first-order electrosensory recipient nucleus, the electrosensory lateral-line lobe, and in layer VI of the midbrain's torus semicircularis, in Eigenmannia virescens, an intermediate-frequency species, and Apteronotus leptorhynchus, a high-frequency species. Calbindin immunoreactivity was completely absent in these nuclei in Sternopygus macrurus, a closely related, low-frequency species. Cytochrome c oxidase levels were inversely related to calbindin immunoreactivity since relatively high levels were observed in the electrosensory lateral-line lobe and torus semicircularis of S. macrurus but were absent in these nuclei in A. leptorhynchus. Our studies indicate that calbindin immunoreactivity is present in tonic, repetitively firing neurons with high frequencies.  相似文献   

20.
Male Codoma ornata produce sounds associated with aggression and spawning activities during the breeding season. Females do not produce sounds. Males most often produced sounds associated with escalated displays of aggression, courtship and the spawning act. C. ornata spawn in crevices, but previously were reported to spawn as egg-clusterers in cavities. Structurally, sounds are low frequency, vary in duration according to context and are not harmonic. The mechanism of sound production is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号