首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic reaction pathway for the mitogen-activated protein kinase ERK2   总被引:2,自引:0,他引:2  
Prowse CN  Hagopian JC  Cobb MH  Ahn NG  Lew J 《Biochemistry》2000,39(20):6258-6266
The structural, functional, and regulatory properties of the mitogen-activated protein kinases (MAP kinases) have long attracted considerable attention owing to the critical role that these enzymes play in signal transduction. While several MAP kinase X-ray crystal structures currently exist, there is by comparison little mechanistic information available to correlate the structural data with the known biochemical properties of these molecules. We have employed steady-state kinetic and solvent viscosometric techniques to characterize the catalytic reaction pathway of the MAP kinase ERK2 with respect to the phosphorylation of a protein substrate, myelin basic protein (MBP), and a synthetic peptide substrate, ERKtide. A minor viscosity effect on k(cat) with respect to the phosphorylation of MBP was observed (k(cat) = 10 +/- 2 s(-1), k(cat)(eta) = 0.18 +/- 0.05), indicating that substrate processing occurs via slow phosphoryl group transfer (12 +/- 4 s(-1)) followed by the faster release of products (56 +/- 4 s(-1)). At an MBP concentration extrapolated to infinity, no significant viscosity effect on k(cat)/K(m(ATP)) was observed (k(cat)/K(m(ATP)) = 0.2 +/- 0.1 microM(-1) s(-1), k(cat)/K(m(ATP))(eta) = -0.08 +/- 0.04), consistent with rapid-equilibrium binding of the nucleotide. In contrast, at saturating ATP, a full viscosity effect on k(cat)/K(m) for MBP was apparent (k(cat)/K(m(MBP)) = 2.4 +/- 1 microM(-1) s(-1), k(cat)/K(m(MBP))(eta) = 1.0 +/- 0.1), while no viscosity effect was observed on k(cat)/K(m) for the phosphorylation of ERKtide (k(cat)/K(m(ERKtide)) = (4 +/- 2) x 10(-3) microM(-1) s(-1), k(cat)/K(m(ERKtide))(eta) = -0.02 +/- 0.02). This is consistent with the diffusion-limited binding of MBP, in contrast to the rapid-equilibrium binding of ERKtide, to form the ternary Michaelis complex. Calculated values for binding constants show that the estimated value for K(d(MBP)) (/= 1.5 mM). The dramatically higher catalytic efficiency of MBP in comparison to that of ERKtide ( approximately 600-fold difference) is largely attributable to the slow dissociation rate of MBP (/=56 s(-1)), from the ERK2 active site.  相似文献   

2.
The catalytic constant (k(cat)) and the second-order association constant of compound II with reducing substrate (k(5)) of horseradish peroxidase C (HRPC) acting on phenols and anilines have been determined from studies of the steady-state reaction velocities (V(0) vs. [S(0)]). Since k(cat)=k(2)k(6)/k(2)+k(6), and k(2) (the first-order rate constant for heterolytic cleavage of the oxygen-oxygen bond of hydrogen peroxide during compound I formation) is known, it has been possible to calculate the first-order rate constant for the transformation of each phenol or aniline by HRPC compound II (k(6)). The values of k(6) are quantitatively correlated to the sigma values (Hammett equation) and can be rationalized by an aromatic substrate oxidation mechanism in which the substrate donates an electron to the oxyferryl group in HRPC compound II, accompanied by two proton additions to the ferryl oxygen atom, one from the substrate and the other the protein or solvent. k(6) is also quantitatively correlated to the experimentally determined (13)C-NMR chemical shifts (delta(1)) and the calculated ionization potentials, E (HOMO), of the substrates. Similar dependencies were observed for k(cat) and k(5). From the kinetic analysis, the absolute values of the Michaelis constants for hydrogen peroxide and the reducing substrates (K(M)(H(2)O(2)) and K(M)(S)), respectively, were obtained.  相似文献   

3.
Enzymatic digestion with a type IIP restriction endonuclease EcoRV was investigated on a DNA-immobilized 27-MHz quartz crystal microbalance (QCM). Real-time observations of both the enzyme binding process and the DNA cleavage process of EcoRV were followed by frequency (mass) changes on the QCM, which were dependent on divalent cations such as Ca(2+) or Mg(2+). In the presence of Ca(2+), the site-specific binding of EcoRV to DNA could be observed, without the catalytic process. On the other hand, in the presence of Mg(2+), both the binding of the enzyme to the specific DNA (mass increase) and the site-specific cleavage reaction (mass decrease) could be observed continuously from QCM frequency changes. From time courses of frequency (mass) changes, each kinetic parameter, namely binding rate constants (k(on)), dissociation rate constants (k(off)), dissociation constants (K(d)) of EcoRV to DNA, and catalytic rate constant (k(cat)) of the cleavage reaction, could be determined. The binding kinetic parameters of EcoRV in the presence of Ca(2+) were consistent with those of the binding process followed by the cleavage process in the presence of Mg(2+). The k(cat) value obtained by the QCM method was also consistent with that obtained by other methods. This study is the first to simultaneously determine k(on), k(off), and k(cat) for a type IIP restriction endonuclease on one device.  相似文献   

4.
Human angiotensin-converting enzyme-related carboxypeptidase (ACE2) is a zinc metalloprotease whose closest homolog is angiotensin I-converting enzyme. To begin to elucidate the physiological role of ACE2, ACE2 was purified, and its catalytic activity was characterized. ACE2 proteolytic activity has a pH optimum of 6.5 and is enhanced by monovalent anions, which is consistent with the activity of ACE. ACE2 activity is increased approximately 10-fold by Cl(-) and F(-) but is unaffected by Br(-). ACE2 was screened for hydrolytic activity against a panel of 126 biological peptides, using liquid chromatography-mass spectrometry detection. Eleven of the peptides were hydrolyzed by ACE2, and in each case, the proteolytic activity resulted in removal of the C-terminal residue only. ACE2 hydrolyzes three of the peptides with high catalytic efficiency: angiotensin II () (k(cat)/K(m) = 1.9 x 10(6) m(-1) s(-1)), apelin-13 (k(cat)/K(m) = 2.1 x 10(6) m(-1) s(-1)), and dynorphin A 1-13 (k(cat)/K(m) = 3.1 x 10(6) m(-1) s(-1)). The ACE2 catalytic efficiency is 400-fold higher with angiotensin II () as a substrate than with angiotensin I (). ACE2 also efficiently hydrolyzes des-Arg(9)-bradykinin (k(cat)/K(m) = 1.3 x 10(5) m(-1) s(-1)), but it does not hydrolyze bradykinin. An alignment of the ACE2 peptide substrates reveals a consensus sequence of: Pro-X((1-3 residues))-Pro-Hydrophobic, where hydrolysis occurs between proline and the hydrophobic amino acid.  相似文献   

5.
A direct mass spectrometric approach was used for the determination of steady-state kinetic parameters, the turnover number (k(cat)), the Michaelis constant (K(M)), and the specificity constant (k(cat)/K(M)) for an enzyme-catalyzed hydrolysis of xylooligosaccharides. Electrospray ionization mass spectrometry was performed to observe product distributions and to determine k(cat), K(M), and k(cat)/K(M) values for Trichoderma reesei endo-1,4-beta-xylanase II (TRX II) with xylohexaose (Xyl(6)), xylopentaose (Xyl(5)), xylotetraose (Xyl(4)), and xylotriose (Xyl(3)) as substrates. The determined k(cat)/K(M) values (0.93, 0.37, 0.027, and 0.00015 microM(-1) s(-1), respectively) indicated that Xyl(6) was the most preferred substrate of TRX II. In addition, the obtained K(M) value for Xyl(5) (136 microM) was roughly twice as high as that for Xyl(6) (73 microM), suggesting that at least six putative subsites contribute to the substrate binding in the active site of TRX II. Previous mass spectrometric assays for enzyme kinetics have been used mostly in the case of reactions that result in a transfer of acidic groups (e.g., phosphate) into neutral oligosaccharides giving rise to negatively charged products. Here we demonstrate that such analysis is also feasible in the case of neutral underivatized oligosaccharides. Implications of the results for the catalytic mechanism of TRX II in particular are discussed.  相似文献   

6.
D-Lactate dehydrogenase (D-LDH) from Pediococcus pentosaceus ATCC 25745 was found to produce D-3-phenyllactic acid from phenylpyruvate. The optimum pH and temperature for enzyme activity were pH 5.5 and 45 °C. The Michaelis-Menten constant (K(m)), turnover number (k(cat)), and catalytic efficiency (k(cat)/K(m)) values for the substrate phenylpyruvate were estimated to be 1.73 mmol/L, 173 s(-1), and 100 (mmol/L)(-1) s(-1) respectively.  相似文献   

7.
Horseradish peroxidase (HRP) is a commercially important enzyme that is available from a number of supply houses in a variety of grades of purity and isoenzymic combinations. The present article describes a comparative study made on nine HRP preparations. Six of these samples were predominantly composed of basic HRP, pl 8.5, and three of acidic HRP, pl 3.5. Two of the basic preparations were of lower purity than the others. The apparent molar catalytic activity of basic HRP with 0.5 mMABTS and 0.2 mM H(2)O(2) was around 950 s(-1) (about 770 s(-1) for the less pure samples) and with a 5 mM guaiacol and 0.6 mM H(2)O(2) was about 180 s(-1) for all the samples. A similar value (approximately 1000 s(-1)) was observed for acidic HRP but only at higher concentrations of ABTS (20 mM). With 20 mM guaiacol the molar catalytic activity of the acid isoenzyme was 65 s(-1). The apparent K(M) for ABTS of the acidic isoenzyme was 4 mM whereas for the basic isoenzyme it was 0.1 mM. All the enzymes were inactivated by H(2)O(2) when it was supplied as the only substrate. Under these conditions the partition ratio (r = number of catalytic cycles given by the enzyme before its inactivation), apparent dissociation constant (K(l)), and apparent rate constant of inactivation (k(inact)) were about twice as large for the acidic samples (1350, 2.6 mM, 9 . 10(-3) s(-1)) as for the basic (650, 1.3 mM, 5 . 10(-3) s(-1)). The apparent catalytic constant (k(cat)) was 3-4 times larger, and the efficiency of catalysis (k(cat)/K(l)) was double for the acidic isoenzyme, but the efficiency of inactivation (k(inact)/K(l)) was similar. The data obtained provide useful information for those using HRP isoenzymes for biotechnological applications (e.g., biosensors, bioreactors, or assays). (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
The complex reaction mechanism of tyrosinase involves three enzymatic forms, two overlapping catalytic cycles and a dead-end complex. Analytical expressions for the catalytic and Michaelis constants of tyrosinase towards phenols and oxygen were derived for both, monophenolase and diphenolase activities of the enzyme. Thus, the Michaelis constants of tyrosinase towards the oxygen (K(mO(2))) are related with the respective catalytic constants for monphenols (k(M)(cat)) and o-diphenols (k(D)(cat)), as well as with the rate constant, k(+8). We recently determined the experimental value of the rate constant for the binding of oxygen to deoxytyrosinase (k(+8)) by stopped-flow assays. In this paper, we calculate theoretical values of K(mO(2)) from the experimental values of catalytic constants and k(+8) towards several monophenols and o-diphenols. The reliability and the significance of the values of K(mO(2)) are discussed.  相似文献   

9.
A solvent deuterium isotope effect on the catalytic affinity (K(m)) and rate constant (k(cat)) of tyrosinase in its action on 4-tert-butylcatechol (TBC) was observed. Both parameters decreased as the molar fraction of deuterated water in the medium increased, while the k(cat)/K(m) ratio remained constant. In a proton inventory study, the representation of k(cat)(f(n))/k(cat)(f(0)) and K(m)(f(n))/K(m)(f(0)) vs. n (atom fractions of deuterium) was linear, indicating that, of the four protons transferred from the two molecules of substrate and which are oxidized in one turnover, only one is responsible for the isotope effects. The fractionation factor of 0.64+/-0.02 contributed to identifying the possible proton acceptor. Possible mechanistic implications are discussed.  相似文献   

10.
The interaction of the human adenovirus proteinase (AVP) and AVP-DNA complexes with the 11-amino acid cofactor pVIc was characterized. The equilibrium dissociation constant for the binding of pVIc to AVP was 4.4 microM. The binding of AVP to 12-mer single-stranded DNA decreased the K(d) for the binding of pVIc to AVP to 0.09 microM. The pVIc-AVP complex hydrolyzed the substrate with a Michaelis constant (K(m)) of 3.7 microM and a catalytic rate constant (k(cat)) of 1.1 s(-1). In the presence of DNA, the K(m) increased less than 2-fold, and the k(cat) increased 3-fold. Alanine-scanning mutagenesis was performed to determine the contribution of individual pVIc side chains in the binding and stimulation of AVP. Two amino acid residues, Gly1' and Phe11', were the major determinants in the binding of pVIc to AVP, while Val2' and Phe11' were the major determinants in stimulating enzyme activity. Binding of AVP to DNA greatly suppressed the effects of the alanine substitutions on the binding of mutant pVIcs to AVP. Binding of either or both of the cofactors, pVIc or the viral DNA, to AVP did not dramatically alter its secondary structure as determined by vacuum ultraviolet circular dichroism. pVIc, when added to Hep-2 cells infected with adenovirus serotype 5, inhibited the synthesis of infectious virus, presumably by prematurely activating the proteinase so that it cleaved virion precursor proteins before virion assembly, thereby aborting the infection.  相似文献   

11.
Effects of ultrasound irradiation on DNA polymerase (Klenow fragment, KF) reactions were studied on the template/primer DNA-immobilized quartz crystal microbalance (QCM). Under ultrasound irradiation, binding of KF to the DNA was suppressed due to the decrease of the binding rate constant (k(1)) and the increase of the dissociation rate constant (k(-)(1)). The catalytic elongation rate (k(cat)) was increased, but the stability of the KF/DNA/monomer ternary complex (K(m)) was decreased by the ultrasound irradiation. Ultrasound effects are discussed in correlation with the conformation changes of domain structures in KF.  相似文献   

12.
Sohn J  Buhrman G  Rudolph J 《Biochemistry》2007,46(3):807-818
Using a combination of steady-state and single-turnover kinetics, we probe substrate association, dissociation, and chemistry for the reaction of Cdc25B phosphatase with its Cdk2-pTpY/CycA protein substrate. The rate constant for substrate association for the wild-type enzyme is 1.3 x 10(6) M(-1) s(-1). The rate constant for dissociation is slow compared to the rate constant for phosphate transfer to form the phospho-enzyme intermediate (k2 = 1.1 s(-1)), making Cdk2-pTpY/CycA a sticky substrate. Compared to the wild type, all hotspot mutants of residues at the remote docking site that specifically affect catalysis with the protein substrate (Arg488, Arg492, and Tyr497 on Cdc25B and Asp206 on Cdk2) have greatly slowed rate constants of association (70- to 4500-fold), and some mutants have decreased k2 values compared to that of the wild type. Most dramatically, R492L, despite showing no significant changes in a crystal structure at 2.0 A resolution, has an approximately 100-fold decrease in k2 compared to that of wild-type Cdc25B. The active site C473S mutant binds tightly to and dissociates slowly from Cdk2-pTpY/CycA (Kd = 10 nM, k(off) = 0.01 s(-1)). In contrast, the C473D mutant, despite showing only localized perturbations in the active site at 1.6 A resolution, has a much weaker affinity and dissociates rapidly (Kd of 2 microM, k(off) > 2 s(-1)) from the protein substrate. Overall, we demonstrate that the association of Cdc25B with its Cdk2-pTpY/CycA substrate is governed to a significant extent by the interactions of the remote hotspot residues, whereas dissociation is governed by interactions at the active site.  相似文献   

13.
The primary specificity residue of a substrate or an inhibitor, called the P(1) residue, is responsible for the proper recognition by the cognate enzyme. This residue enters the S(1) pocket of the enzyme and establishes contacts (up to 50%) inside the proteinase substrate cavity, strongly affecting its specificity. To analyze the influence on bovine alpha-chymotrypsin substrate activity, aromatic non-proteinogenic amino acid residues in position P(1) with the sequence Ac-Phe-Ala-Thr-X-Anb(5,2)-NH(2) were introduced: L-pyridyl alanine (Pal), 4-nitrophenylalanine - Phe(p-NO(2)), 4-aminophenylalanine - Phe(p-NH(2)), 4-carboxyphenylalanine Phe(p-COOH), 4-guanidine phenylalanine - Phe(p-guanidine), 4-methyloxycarbonyl-phenylalanine - Phe(p-COOMe), 4-cyanophenylalanine - Phe(p-CN), Phe, Tyr. The effect of the additional substituent at the phenyl ring of the Phe residue was investigated. All peptides contained an amide of 5-amino-2-nitrobenzoic acid, which served as a chromophore. Kinetic parameters (k(cat), K(M) and k(cat)/K(M)) of the peptides synthesized with bovine alpha-chymotrypsin were determined. The highest value of the specificity constant k(cat)/K(M), reaching 6.0 x 10(5) [M(-1)xs(-1)], was obtained for Ac-Phe-Ala-Thr-Phe(p-NO(2))-Anb(5,2)-NH(2). The replacement of the acetyl group with benzyloxycarbonyl moiety yielded a substrate with the value of k(cat) more than three times higher. Peptide aldehydes were synthesized with selected residues (Phe, Pal, Tyr, Phe(p-NO(2)) in position P(1) and potent chymotrypsin inhibitors were obtained. The dissociation constant (K(i)) with the experimental enzyme determined for the most active peptide, Tos-Phe-Ala-Thr-Phe(p-NO(2))-CHO, amounted to 1.12 x 10(-8) M.  相似文献   

14.
M Slatner  B Nidetzky  K D Kulbe 《Biochemistry》1999,38(32):10489-10498
To characterize catalysis by NAD-dependent long-chain mannitol 2-dehydrogenases (MDHs), the recombinant wild-type MDH from Pseudomonas fluorescens was overexpressed in Escherichia coli and purified. The enzyme is a functional monomer of 54 kDa, which does not contain Zn(2+) and has B-type stereospecificity with respect to hydride transfer from NADH. Analysis of initial velocity patterns together with product and substrate inhibition patterns and comparison of primary deuterium isotope effects on the apparent kinetic parameters, (D)k(cat), (D)(k(cat)/K(NADH)), and (D)(k(cat)/K(fructose)), show that MDH has an ordered kinetic mechanism at pH 8.2 in which NADH adds before D-fructose, and D-mannitol and NAD are released in that order. Isomerization of E-NAD to a form which interacts with D-mannitol nonproductively or dissociation of NAD from the binary complex after isomerization is the slowest step (>/=110 s(-)(1)) in D-fructose reduction at pH 8.2. Release of NADH from E-NADH (32 s(-)(1)) is the major rate-limiting step in mannitol oxidation at this pH. At the pH optimum for D-fructose reduction (pH 7.0), the rate of hydride transfer contributes significantly to rate limitation of the catalytic cascade and the overall reaction. (D)(k(cat)/K(fructose)) decreases from 2.57 at pH 7.0 to a value of 相似文献   

15.
Escherichia coli RNase P derivatives were evolved in vitro for DNA cleavage activity. Ribonucleoproteins sampled after ten generations of selection show a >400-fold increase in the first-order rate constant (k(cat)) on a DNA substrate, reflecting a significant improvement in the chemical cleavage step. This increase is offset by a reduction in substrate binding, as measured by K(M). We trace the catalytic enhancement to two ubiquitous A-->U sequence changes at positions 136 and 333 in the M1 RNA component, positions that are phylogenetically conserved in the Eubacteria. Furthermore, although the mutations are located in different folding domains of the catalytic RNA, the first in the substrate binding domain, the second near the catalytic core, their effect on catalytic activity is significantly influenced by the presence of the C5 protein. The activity of the evolved ribonucleoproteins on both pre-4.5 S RNA and on an RNA oligo substrate remain at wild-type levels. In contrast, improved DNA cleavage activity is accompanied by a 500-fold decrease in pre-tRNA cleavage efficiency (k(cat)/K(M)). The presence of the C5 component does not buffer this tradeoff in catalytic activities, despite the in vivo role played by the C5 protein in enhancing the substrate versatility of RNase P. The change at position 136, located in the J11/12 single-stranded region, likely alters the geometry of the pre-tRNA-binding cleft and may provide a functional explanation for the observed tradeoff. These results thus shed light both on structure/function relations in E. coli RNase P and on the crucial role of proteins in enhancing the catalytic repertoire of RNA.  相似文献   

16.
Studies of the proton-transfer reaction by Pseudomonas testosteroni 3-oxo steroid Delta(4)-Delta(5)-isomerase with Delta(5(6))- and Delta(5(10))-steroid substrates demonstrate the importance of the position of the double bond for the efficiency of the isomerization process. Thus 3-oxo-Delta(5(6))-substrates have markedly high k(cat.) values, whereas those of 3-oxo-Delta(5(10))-substrates are very low and their apparent K(m) values approach equilibrium dissociation constants. The first step in the isomerization process is: [Formula: see text] which is governed by the k(-1)/k(+1) ratio and is shown to be very similar for the two classes of substrates (3-oxo-Delta(5(6))- and -Delta(5(10))-steroids). They therefore differ in the steps distal to the initial formation of the Michaelis-Menten complex. The use of the deuterated androst-5(6)-ene-3,17-dione substrate enabled us to calculate individual rate constants k(+1) and k(-1) as well as to determine the apparent rate-limiting step in the isomerization process. With the deuterated oestr-5(10)-ene-3,17-dione substrate, no significant isotope effect was observed suggesting that a different rate-limiting step may be operative in this isomerization process. Data are presented that indicate that under optimal concentrations of the efficient androst-5(6)-ene-3,17-dione substrate, the forward reaction for ES complex formation (as defined by k(+1)) is limited only by diffusion and the apparent K(m) does not approach the equilibrium constant, suggesting that the evolution of this enzyme has proceeded close to ;catalytic perfection'.  相似文献   

17.
B Holtz  P Cuniasse  A Boulay  R Kannan  A Mucha  F Beau  P Basset  V Dive 《Biochemistry》1999,38(37):12174-12179
The influence of Gln215 in stromelysin-3 (MMP-11), a residue located in the S1' subsite, was determined by producing three single mutants of this position. As compared to wild-type stromelysin-3, the kinetic parameters K(M) and k(cat) for the degradation of the fluorogenic substrate Dns-Pro-Leu-Ala-Leu-Trp-Ala-Arg-NH(2) (Dns-Leu) by these mutants indicated that the Gln/Leu substitution led to a 4-fold decrease in catalytic efficiency, whereas the mutations Gln/Tyr and Gln/Arg increased this parameter by a factor 10. The cleavage of alpha1-protease inhibitor (alpha1-PI), a natural substrate of stromelysin-3, by these mutants was also determined. Their relative activities for the degradation of alpha1-PI correspond to those observed with the synthetic substrate Dns-Leu. The catalytic efficiency of wild-type stromelysin-3 and its mutants to cleave the P1' analogue of Dns-Leu, containing the unusual amino acid Cys(OMeBn) (Dns-Cys(OMeBn)), was also determined. The values of the specificity factor, calculated as the ratio (k(cat)/K(M))Dns-Cys(OMeBn))/(k(cat)/K(M))Dns-Leu, were observed to vary from 26 for the wild-type stromelysin-3 to 120 for the Gln/Leu mutant and 25 for the Gln/Arg mutant. The Gln/Tyr mutant did not cleave the substrate when its P1' position is substituted by the unusual amino acid Cys(OMeBn). Altogether these observations established that both the catalytic activity and the specificity of stromelysin-3 are dependent on the nature of the residue in position 215. Finally, the cleavage efficiency of the Dns substrates by three representative matrixins, namely, MMP-14 (215 = Leu), MMP-1 (215 = Arg), and MMP-7 (215 = Tyr), was determined. Interestingly, the trends observed for these enzymes were similar to those established for the three mutants of stromelysin-3, pointing out the influence of position 215 toward the selectivity in this family of enzymes.  相似文献   

18.
Wu J  Kinoshita K  Khosla C  Cane DE 《Biochemistry》2004,43(51):16301-16310
The beta-ketoacyl-acyl carrier protein synthase (KS) domain of the modular 6-deoxyerythronolide B synthase (DEBS) catalyzes the fundamental chain building reaction of polyketide biosynthesis. The KS-catalyzed reaction involves two discrete steps consisting of formation of an acyl-enzyme intermediate generated from the incoming acylthioester substrate and an active site cysteine residue, and the conversion of this intermediate to the beta-ketoacyl-acyl carrier protein product by a decarboxylative condensation with a paired methylmalonyl-SACP. We have determined the rate constants for the individual biochemical steps by a combination of protein acylation and transthioesterification experiments. The first-order rate constant (k(2)) for formation of the acyl-enzyme intermediate from [1-(14)C]-(2S,3R)-2-methyl-3-hydroxypentanoyl-SNAC (2) and recombinant DEBS module 2 is 5.8 +/- 2.6 min(-)(1), with a dissociation constant (K(S)) of 3.5 +/- 2.8 mM. The acyl-enzyme adduct was formed at a near-stoichiometric ratio of approximately 0.8:1. Transthioesterification between unlabeled diketide-SNAC 2 and N-[1-(14)C-acetyl]cysteamine gave a k(exch) of 0.15 +/- 0.06 min(-)(1), with a K(m) for HSNAC of 5.7 +/- 4.9 mM and a K(m) for 2 of 5.3 +/- 0.9 mM. Under the conditions that were used, k(exch) was equal to k(-)(2), the first-order rate constant for reversal of the acyl-enzyme-forming reaction. Since the rate of the decarboxylative condensation is much greater that the rate of reversion to the starting material (k(3) > k(-)(2)), formation of the acyl-enzyme adduct is effectively irreversible, thereby establishing that the observed value of the specificity constant (k(cat)/K(m)) is solely a reflection of the intrinsic substrate specificity of the KS-catalyzed acyl-enzyme-forming reaction. These findings were also extended to a panel of diketide- and triketide-SNAC analogues, revealing that some substrate analogues that are not converted to product by DEBS module 2 form dead-end acyl-enzyme intermediates.  相似文献   

19.
The hydrolysis of N-acetyl-L-methionine, N-acetylglycine, N-acetyl-L-phenylalanine, and N-acetyl-L-alanine at 298.35K by porcine kidney acylase I (EC 3.5.1.14) was monitored by the heat released upon mixing of the substrate and enzyme in a differential stopped flow microcalorimeter. Values for the Michaelis constant (K(m)) and the catalytic constant (k(cat)) were determined from the progress of the reaction curve employing the integrated form of the Michaelis-Menten equation for each reaction mixture. When neglecting acetate product inhibition of the acylase, values for k(cat) were up to a factor of 2.3 larger than those values determined from reciprocal initial velocity-initial substrate concentration plots for at least four different reaction mixtures. In addition, values for K(m) were observed to increase linearly with an increase in the initial substrate concentration. When an acetate product inhibition constant of 600+/-31M(-1), determined by isothermal titration calorimetry, was used in the progress curve analysis, values for K(m) and k(cat) were in closer agreement with their values determined from the reciprocal initial velocity versus initial substrate concentration plots. The reaction enthalpies, Delta(r)H(cal), which were determined from the integrated heat pulse per amount of substrate in the reaction mixture, ranged from -4.69+/-0.09kJmol(-1) for N-acetyl-L-phenylalanine to -1.87+/-0.23kJmol(-1) for N-acetyl-L-methionine.  相似文献   

20.
Kinetic and binding studies involving a model DNA cytosine-5-methyltransferase, M.HhaI, and a 37-mer DNA duplex containing a single hemimethylated target site were applied to characterize intermediates on the reaction pathway. Stopped-flow fluorescence studies reveal that cofactor S-adenosyl-l-methionine (AdoMet) and product S-adenosyl-l-homocysteine (AdoHcy) form similar rapidly reversible binary complexes with the enzyme in solution. The M.HhaI.AdoMet complex (k(off) = 22 s(-)1, K(D) = 6 microm) is partially converted into products during isotope-partitioning experiments, suggesting that it is catalytically competent. Chemical formation of the product M.HhaI.(Me)DNA.AdoHcy (k(chem) = 0.26 s(-)1) is followed by a slower decay step (k(off) = 0.045 s(-)1), which is the rate-limiting step in the catalytic cycle (k(cat) = 0.04 s(-)1). Analysis of reaction products shows that the hemimethylated substrate undergoes complete (>95%) conversion into fully methylated product during the initial burst phase, indicating that M.HhaI exerts high binding selectivity toward the target strand. The T250N, T250D, and T250H mutations, which introduce moderate perturbation in the catalytic site, lead to substantially increased K(D)(DNA(ternary)), k(off)(DNA(ternary)), K(M)(AdoMet(ternary)) values but small changes in K(D)(DNA(binary)), K(D)(AdoMet(binary)), k(chem), and k(cat). When the target cytosine is replaced with 5-fluorocytosine, the chemistry step leading to an irreversible covalent M.HhaI.DNA complex is inhibited 400-fold (k(chem)(5FC) = 0.7 x 10(-)3 s(-)1), and the Thr-250 mutations confer further dramatic decrease of the rate of the covalent methylation k(chem). We suggest that activation of the pyrimidine ring via covalent addition at C-6 is a major contributor to the rate of the chemistry step (k(chem)) in the case of cytosine but not 5-fluorocytosine. In contrast to previous reports, our results imply a random substrate binding order mechanism for M.HhaI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号