首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possible reversibility of pH induced activation of the glucocorticoid-receptor complex was studied. Generally, this was accomplished by activating rat liver cytosol at pH 8.5 (15 degrees C, 30 min), and then returning it to pH 6.5 for a second incubation (15 degrees C, 30 min). Activation was quantitated by measuring the binding of [3H]triamcinolone acetonide [( 3H]TA)-receptor complexes to DNA-cellulose. When cytosol was incubated at pH 6.5, only 4.1% of the [3H]TA-receptor complexes bound to DNA-cellulose. However, 39.2% of the complexes bound when the cytosol was pH activated. When pH activation was followed by a second incubation at pH 6.5, 47.0% of the steroid-receptor complexes bound. Thus, according to the DNA-cellulose binding assay, pH induced activation was irreversible. In order to visualize both activated and unactivated [3H]TA-receptor complexes during this process, diethylaminoethyl (DEAE)-cellulose chromatography was performed. When cytosol was incubated at pH 6.5, only 19.6% of the [3H]TA-receptor complexes were eluted in the activated form from DEAE-cellulose. However, 67.5% of the complexes were eluted in the activated form when cytosol was pH activated. When pH activation was followed by a second incubation at pH 6.5, 74.9% of the steroid-receptor complexes were eluted in the activated form. Thus, DEAE-cellulose chromatography also showed that pH induced activation was irreversible. This is the first known report that the combination of DNA-cellulose binding and DEAE-cellulose chromatography have been used to study pH induced activation of the glucocorticoid-receptor complex. By these criteria, we conclude that in vitro pH induced activation is irreversible.  相似文献   

2.
In cells exposed to glucocorticoids at 37 degrees C activated glucocorticoid-receptor complexes (complexes with affinity for nuclei and DNA) are formed after nonactivated complexes. Activation thus appears to be an obligatory physiological process. To investigate this process we have characterized cytoplasmic complexes formed in rat thymocytes at 0 and 37 degrees C. Complexes in cytosols stabilized with molybdate were analyzed by sucrose gradient centrifugation and by chromatography on DNA-cellulose, DEAE-cellulose, and agarose gels. Two major complexes were observed: the nonactivated complex, eluted from DEAE at approximately 200 mM KCl, was formed at 0 and 37 degrees C, gave S20,w = 9.2 S, Stokes radius = 8.3 nm, and calculated Mr = 330,000; the activated complex, eluted from DEAE at approximately 50 mM KCl, appeared only at 37 degrees C, gave S20,w = 4.8 S, Stokes radius = 5.0 nm, and Mr = 100,000. A third, minor complex, probably mero-receptor, which appeared mainly at 37 degrees C, bound to neither DNA nor DEAE, and gave S20,w = 2.9 S, Stokes radius = 2.3 nm, and Mr = 27,000. With three small columns in series (DNA-cellulose, DEAE-cellulose and hydroxylapatite), the three complexes can be separated in 5-10 min. By this method we have examined the stability of complexes under our conditions. We conclude that in intact thymus cells glucocorticoid-receptor complexes occur principally in two forms, nonactivated and activated, and that activation is accompanied by a large reduction in size. The origin of the mero-receptor complex remains uncertain.  相似文献   

3.
Thermal "activation" or "transformation" of rat hepatic [6,7-3H]triamcinolone acetonide (TA)-receptor complexes purified in the unactivated state to near homogeneity (Grandics, P., Miller, A., Schmidt, T. J., Mittman, D., and Litwack, G. (1984) J. Biol. Chem. 259, 3173-3180) has been further investigated. The data generated in reconstitution experiments demonstrate that warming (25 degrees C for 30 min) of the purified unactivated complexes promotes their activation as judged by an increase in DNA-cellulose binding, but to a lower extent than that observed after warming of glucocorticoid-receptor complexes in crude cytosols. However, maximal DNA-cellulose binding capacity can be detected in reconstituted systems (also heated at 25 degrees C for 30 min) consisting of purified unactivated [3H]TA-receptor complexes and a cytoplasmic "stimulator(s)." This cytoplasmic factor(s), which does not copurify with the receptor, is heat-stable (90 degrees C for 30 min), excluded from Sephadex G-25, and trypsin-sensitive and stimulates DNA-cellulose binding in a dose-dependent manner. The ability of Na2MoO4 to block thermal activation of the highly purified receptor complexes suggests that this transition metal anion interacts directly with the receptor protein itself. The fact that the cytoplasmic stimulator(s) enhances DNA-cellulose binding of the [3H]TA-receptor complexes without increasing the proportion of those complexes eluted in the activated (low salt) position from DEAE-cellulose is consistent with a proposed two-step model of in vitro activation. During the Na2MoO4-sensitive Step 1, elevated temperature (25 degrees C for 30 min) may directly alter the conformation of the purified receptor complexes (i.e. subunit dissociation or disaggregation), resulting in the appropriate shift in the elution profile of the [3H]TA-receptor complexes on DEAE-cellulose but only in a minimal (approximately 2-3-fold) increase in the binding of these complexes to DNA-cellulose. During the Na2MoO4-insensitive and temperature-independent Step 2, a heat-stable cytoplasmic protein(s) may interact with these thermally activated [3H]TA-receptor complexes and enhance their ability to bind to DNA-cellulose without further increasing the percentage of those complexes which elute from DEAE-cellulose in the activated position. In crude cytosols these two steps would presumably occur simultaneously, and addition of Na2MoO4 prior to warming would block Step 1 and hence Step 2 would not occur.  相似文献   

4.
Bovine pancreatic ribonuclease (RNase) A and S protein (enzymatically inactive proteolytic fragment of RNase A which contains RNA binding site) stimulate the activation, as evidenced by increasing DNA-cellulose binding, of highly purified rat hepatic glucocorticoid-receptor complexes. These effects are dose dependent with maximal stimulation of DNA-cellulose binding being detected at approximately 500 micrograms (50 units of RNase A/mL). RNase A and S protein do not enhance DNA-cellulose binding via their ability to interact directly with DNA or to increase nonspecific binding of receptors to cellulose. Neither S peptide (enzymatically inactive proteolytic fragment which lacks RNA binding site) nor cytochrome c, a nonspecific basic DNA binding protein, mimics these effects. RNase A and S protein do not stimulate the conformational change which is associated with activation and is reflected in a shift in the elution profile of receptor complexes from DEAE-cellulose. In contrast, these two proteins interact with previously heat-activated receptor complexes to further enhance their DNA-cellulose binding capacity and thus mimic the effects of an endogenous heat-stable cytoplasmic protein(s) which also function(s) during step 2 of in vitro activation [Schmidt, T. J., Miller-Diener, A., Webb, M. L., & Litwack, G. (1985) J. Biol. Chem. 260, 16255-16262]. Preadsorption of RNase A and S protein to an RNase affinity resin containing an inhibitory RNA analogue, or trypsin digestion of the RNA binding site within S protein, eliminates the subsequent ability of these two proteins to stimulate DNA-cellulose binding of the purified receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Summary Unlike the unactivated glucocorticoid-receptor complex, the thermally activated glucocorticoid-receptor complex was able to bind to Affigel blue (a matrix previously shown to bind proteins containing a dinucleotide fold region) under low ionic conditions (0.05 M KCl). Glucocorticoid-receptor complex binding capacity to Affigel blue was enhanced by increasing salt concentration. Optimal binding was obtained at 0.15 M KCl and remained at a plateau level up to 0.4 M KCl. In contrast to Affigel blue binding, glucocorticoid-receptor complex binding to nuclei was optimum at low ionic strength buffer, declined at 0.15 M KCl and became negligible at 0.4 M KCl. Interestingly, at physiological ionic strength (0.15 M KCl) both nuclei and Affigel blue bound to the glucocorticoid-receptor complex with almost identical capacity. Glucocorticoid-receptor complexes incubated 45 min at 25 °C (activation conditions) in the presence of 10 mM molybdate were unable to bind to Affigel blue (or isolated nuclei) as expected. The results obtained suggest that Affigel blue mimics isolated nuclei in the binding of activated glucocorticoid-receptor complexes under physiological (0.15 M KCl) conditions. In addition, Affigel blue may provide a rapid and easy method to study glucocorticoid-receptor complex activation and interaction with nuclear acceptor sites.  相似文献   

6.
Cortexolone functions as an antiglucocorticoid in the human leukemic cell line CEM-C7, since it blocks the growth inhibition and cell lysis mediated by the potent agonist triamcinolone acetonide (TA). At high concentrations (10(-5) M) cortexolone alone is inactive. The ability of cortexolone to block the TA-mediated biological effects is reflected in its ability (1000-fold molar excess) to effectively block the binding of [3H]TA to the cytoplasmic unactivated form of the receptors eluted from DEAE-cellulose at approx. 180 mM potassium phosphate (KP). Likewise a 1000-fold molar excess of TA inhibits the specific binding of [3H]cortexolone to the unactivated receptors and to a peak which elutes at low salt concentration (35 mM KP) but does not appear to represent activated [3H]cortexolone-receptor complexes. Thermal activation/transformation (25 degrees C for 30 min +/- 10 mM ATP) of the [3H]TA-receptor complexes significantly enhances the subsequent DNA-cellulose binding capacity of these complexes and also results in their elution from DEAE-cellulose at the low salt (50 mM KP) activated position. In contrast, exposure of the cytoplasmic [3H]cortexolone-receptor complexes to identical in vitro activating (transforming) conditions fails to enhance subsequent DNA-cellulose binding capacity or to result in the appropriate shift in DEAE-cellulose elution profile. This inability of [3H]cortexolone to facilitate activation/transformation of receptors was also verified using cytosol prepared from the glucocorticoid-resistant 'activation-labile' mutant, 3R7. Taken collectively the data suggest that cortexolone, unlike an agonist such as TA, fails to promote in vitro activation/transformation, a conformational change which also occurs in vivo under physiological conditions and is a prerequisite for nuclear binding.  相似文献   

7.
The synthetic antiglucocorticoid RU 38486 interacts with cardiac cytoplasmic glucocorticoid receptors and competes for in vitro binding with the potent agonist triamcinolone acetonide. In addition to binding to receptors with high affinity, RU 38486 also facilitates the in vitro conformational change in the receptor which is a consequence of the physiologically relevant activation step during which the receptor is converted from a non DNA- to a DNA-binding form. This ability of RU 38486 to promote receptor activation is reflected by both the appropriate shift in the elution profile of [3H]RU 38486-receptor complexes from DEAE-cellulose as well as by an increased binding of these complexes to DNA-cellulose. Although less effective than triamcinolone acetonide, RU 38486 promotes in vitro receptor activation under a variety of experimental conditions, including incubation of labeled cardiac cytosols at 25 degrees C for 30 min or at 15 degrees C for 30 min in the presence of 5 mM pyridoxal 5'-phosphate. Once thermally activated, the cardiac [3H]triamcinolone acetonide and [3H]RU 38486-receptor complexes bind to nonspecific DNA-cellulose with the same relative affinities, as evidenced by the fact that 50% of both activated complexes are eluted at approx. 215-250 mM NaCl. Thus, this pure antiglucocorticoid does promote, at least to some extent, many of the crucial in vitro events including high-affinity binding, activation, and DNA binding which have been shown to be required to elicit a physiological response in vivo.  相似文献   

8.
We have studied the kinetics, on time scales of minutes and seconds, of formation and interconversion of glucocorticoid-receptor complexes in rat thymus cells under physiological conditions. Nonactivated and activated complexes were measured by a minicolumn technique that permits rapid, multiple simultaneous assays. The rate-limiting step in formation of nuclear complexes was activation, which at 37 degrees C had a half-time of 30-60 s. Activation in cells at 25 degrees C followed first order kinetics. Nuclear binding at 37 degrees C was too fast to measure, and probably has a half-time below 10 s. Earlier findings suggesting that triamcinolone acetonide and dexamethasone give higher steady state ratios of activated to nonactivated complexes than cortisol and corticosterone have been supported by showing that these ratios are concentration-independent, and are unlikely to be due to degradation or dissociation of complexes after cell disruption. A simple cyclic model of receptor kinetics, in which each glucocorticoid is characterized by its dissociation rate constant, accounts quantitatively for these results and many others. The model is based on the assumptions that activation is irreversible, and that energy is required for regenerating functional receptors after each cycle. It yields steady state ratios of activated to nonactivated complexes in agreement with experiment without introducing steroid-specific allosteric influences on activation, and suggests a new mechanism for explaining agonist-antagonist relationships.  相似文献   

9.
When freshly prepared glucocorticoid-receptor complex from rat liver cytosol was incubated at 23 degrees C in the presence of sodium molybdate, its subsequent binding to isolated nuclei, DNA-cellulose and ATP-Sepharose was blocked. In addition, binding to these acceptors by cytosol receptor complex fractionated with (NH4)2SO4 was also blocked by incubation of the complexes with 50 mM-sodium molybdate. However, molybdate had no effect on the binding of activated receptor complexes to ATP-Sepharose. Molybdate was also effective in extracting the nuclear- and DNA-cellulose-bound glucocorticoid-receptor complexes in a dose-dependent manner. Molybdate appears to exert its effects directly on the receptor by interacting with both non-activated and activated receptor forms.  相似文献   

10.
The synthetic antiglucocorticoid RU 38486 interacts with cardiac cytoplasmic glucocorticoid receptors and competes for in vitro binding with the potent agonist triamcinolone acetonide. In addition to binding to receptors with high affinity, RU 38486 also facilitates the in vitro conformational change in the receptor which is a consequence of the physiologically relevant activation step during which the receptor is converted from a non DNA- to a DNA-binding form. This ability of RU 38486 to promote receptor activation is reflected by both the appropriate shift in the elution profile of [3H]RU 38486-receptor complexes from DEAE-cellulose as well as by an increased binding of these complexes to DNA-cellulose. Although less effective than triamcinolone acetonide, RU 38486 promotes in vitro receptor activation under a variety of experimental conditions, including incubation of labeled cardiac cytosols at 25°C for 30 min or at 15°C for 30 min in the presence of 5 mM pyridoxal 5′-phosphate. Once thermally activated, the cardiac [3H]triamcinolone acetonide and [3H]RU 38486-receptor complexes bind to nonspecific DNA-cellulose with the same relative affinities, as evidenced by the fact that 50% of both activated complexes are eluted at approx. 215–250 mM NaCl. Thus, this pure antiglucocorticoid does promote, at least to some extent, many of the crucial in vitro events including high-affinity binding, activation, and DNA binding which have been shown to be required to elicit a physiological response in vivo.  相似文献   

11.
The action of theophylline on the uptake of alpha-aminoisobutyric acid (AIB; an indicator of anti-inflammatory potency) stimulated by the glucocorticoid, dexamethasone, in cultured rat fibroblast monolayers was evaluated. Theophylline alone (0.1 m m) did not show significant activity (3314+/-27 cpm) compared with the baseline level (3186+/-130 cpm), but in the presence of 10 n m dexamethasone the stimulation of AIB uptake was increased to 5263+/-100 cpm, approximately to the same extent as with 100 n m dexamethasone alone (5397+/-28 cpm). Activation of glucocorticoid-receptor complexes in rat fibroblast cytosol was studied by assessing the extent of their binding to DNA-cellulose. Activated and non-activated forms of glucocorticoid-receptor complexes were analysed by DEAE-Sephadex chromatography. Theophylline (1 m m) was found to have a direct effect (0 degrees C), similar to that of heat (25 degrees C) on DNA-cellulose binding, that is approximately 64.5% and 68.7%, respectively, thus indicating that theophylline promotes activation of glucocorticoid receptors at low temperature. The effect of theophylline on the stimulation of AIB uptake by dexamethasone when considered in the light of its activation of GR receptors in the fibroblast cytosol indicates that this effect may be mediated by GR activation.  相似文献   

12.
We have identified an endogenous regulator of the glucocorticoid receptor following fractionation of dialyzed rat liver cytosol on DEAE-cellulose. The macromolecular regulator, purified approximately 20-fold as judged by Lowry-reactive material, inhibits activation of glucocorticoid-receptor complexes when assayed by DNA-cellulose binding and by chromatography on DEAE-cellulose minicolumns. In addition the active DEAE-cellulose fraction stabilizes the unoccupied glucocorticoid receptor against heat inactivation. Evidence is presented that the observed inhibition of activation by the active DEAE-cellulose fraction is not due to concentration of cytosolic proteases or RNA. The inhibitory molecule in the active fraction is not stable to heating at 90 degrees C (15 min) and is partially inactivated at 45 degrees C (15-60 min).  相似文献   

13.
In this report we examine the DNA-cellulose binding and sedimentation properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) receptors from rat intestine and cultured human mammary cancer cells (MCF-7) extracted in nonactivating (low salt) buffers. Receptors prepared in hypotonic buffer had low DNA binding (13%) compared to receptors extracted with 0.3 M KCl (50%). Treatment of low salt receptor preparations with KCl significantly increased (approximately 3-fold) DNA-binding (activation), demonstrating that receptors can be "activated" in vitro. Activated receptors eluted from DNA-cellulose at 0.18 M KCl. Sedimentation analysis followed by DNA-cellulose binding indicated that activated receptors are approximately 3.2 S and unactivated receptors 5.5 S in size. These results suggest that dissociation of an aggregated moiety may lead to receptor activation. Treatment of unactivated receptor with RNase did not alter DNA binding or sedimentation properties of the aggregated receptor. Treatment of unactivated receptor complexes with heat did not increase DNA binding, and molybdate did not block subsequent salt activation. In summary these results suggest that 1,25(OH)2D3 receptors undergo a salt-induced activation step similar to that described for other steroid receptor systems. However, 1,25(OH)2D3 receptors differ from other steroid receptors in not exhibiting heat activation nor having salt activation blocked by molybdate.  相似文献   

14.
When soluble steroid-receptor complexes are exposed to DNA-cellulose only activated complexes bind. The specificity of the binding was shown by its dependence on the presence of hormone during activation. However, prolonged incubation of non-activated steroid-receptor complexes with DNA-cellulose led to a progressive activation of these complexes. When the same hepatic cytosol containing heat-activated [3H]triamcinolone acetonide-receptor complexes was titrated by high concentrations of nuclei or DNA-cellulose the former bound 75% of the complexes, the later only 40%. This decreased binding was due on the one hand to a lower initial interaction between DNA-cellulose and activated complexes than between nuclei and these complexes and on the other hand to increased losses during washes when DNA-cellulose was used. For these reasons nuclei and not DNA-cellulose should be used when accurate measurements of the concentration of activated complexes are required. When only comparative data are needed DNA-cellulose may, however, be employed.  相似文献   

15.
When soluble steroid-receptor complexes are exposed to DNA-cellulose only activated complexes bind. The specificity of the binding was shown by its dependence on the presence of hormone during activation. However, prolonged incubation of non-activated steroid-receptor complexes with DNA-cellulose led to a progressive activation of these complexes. When the same hepatic cytosol containing heat-activated [3H]triamcinolone acetonide-receptor complexes was titrated by high concentrations of nuclei or DNA-cellulose the former bound 75% of the complexes, the latter only 40%. This decreased binding was due on the one hand to a lower initial interaction between DNA-cellulose and activated complexes than between nuclei and these complexes and on the other hand to increased losses during washes when DNA-cellulose was used. For these reasons nuclei and not DNA-cellulose should be used when accurate measurements of the concentration of activated complexes are required. When only comparative data are needed DNA-cellulose may, however, be employed.  相似文献   

16.
Effects of aurintricarboxylic acid (ATA) were examined on the DNA binding properties of rat liver glucocorticoid-receptor complex. The DNA-cellulose binding capacity of the glucocorticoid-receptor complex was completely abolished by a pretreatment of receptor preparation with 0.1-0.5 mM ATA at 4 degrees C. The half-maximal inhibition (i.d.50) in the DNA binding of [3H]triamcinolone acetonide-receptor complex [( 3H]TARc) was observed at 130- and 40 microM ATA depending upon whether the inhibitor was added prior to or following the receptor activation. The entire DNA-cellulose bound [3H]TARc could be extracted in a concentration-dependent manner by incubation with 2-100 microns ATA. The [3H]TARc remained intact under the above conditions, the receptor in both control and ATA-treated preparations sedimented in the same region in salt-containing 5-20% sucrose gradients. The action of ATA appeared to be on the receptor and not on DNA-cellulose. The DNA-binding capacity of ATA-treated receptor preparations could be recovered upon exhaustive dialysis. The treatment with ATA did not appear to change the ionic behavior of heat activated GRc; the receptor in both control and the ATA-treated preparations showed similar elution profiles. Therefore, ATA appears to alter the binding to and dissociation of glucocorticoid-receptor complex from DNA. The use of ATA should offer a good chemical probe for analysis of the DNA binding domain(s) of the glucocorticoid receptor.  相似文献   

17.
This investigation was undertaken 1) to determine whether the increased glucocorticoid-receptor binding activities, observed in hypertrophied plantaris muscles, are associated with a reduced ability to undergo receptor activation and 2) to examine whether glucocorticoid-receptor complexes in hypertrophied muscles undergo a shift in the relative distribution of the two thermally activated receptor forms (termed binder II and corticosteroid binder IB) to a distribution that is found in slow-twitch or heart muscle types. Plantaris muscles of female adrenalectomized rats, enlarged by surgical removal of synergists, were 60% heavier and had higher glucocorticoid cytosol binding (125 +/- 14 vs. 79 +/- 8 fmol/mg protein) than these muscles of controls. Activation, which was quantitated by the ability of the steroid-receptor complex to bind to DNA, was similar in overloaded and control muscles (57 +/- 2 vs. 62 +/- 4%). Diethylaminoethyl-cellulose chromatography of activated receptors showed approximately 16% of the radioactivity appearing as binder II and 38% as binder IB in both hypertrophied and control muscles. These results show that although enlarged plantaris muscles are undergoing certain fast- to slow-twitch biochemical transformations, the activated glucocorticoid-receptor distribution does not shift to that observed in slow fibers.  相似文献   

18.
Glucocorticoid-receptor complex from rat liver cytosol, activated by warming at 23°C or fractionation with (NH4)2SO4, was adsorbed over DNA-cellulose. This DNA-cellulose-bound [3H]triamcinolone acetonide-receptor complex was extracted in a dose-dependent manner by incubation with different concentrations of sodium tungstate. A 50% recovery of receptor was achieved with 5 mM sodium tungstate. Almost the entire glucocorticoid-receptor complex bound to DNA-cellulose could be extracted with 20 mM sodium tungstate. The [3H]triamcinolone acetonide released from DNA-cellulose following tungstate and molybdate treatment was found to be associated with a macromolecule, as seen by analysis on a Sephadex G-75 column. The glucocorticoid-receptor complex extracted by both the compounds sedimented as a 4 S entity of 5–20% sucrose gradients under low- and high-salt conditions. Addition of tungstate or molybdate to the preparations containing activated receptor had no effect on the sedimentation rate of receptor. However, addition of tungstate to non-activated receptor preparation caused aggregates of larger size. The tungstate-extracted glucocorticoid-receptor complex failed to rebind to DNA-cellulose even after extensive dialysis, whereas receptor in molybdate-extract retained its DNA-cellulose binding capacity.  相似文献   

19.
The activation by salt or ATP of [3H]estradiol- and [3H]H1285-receptor complexes from rabbit uterus and their binding capacity to DNA-cellulose, phosphocellulose and ATP-Sepharose has been studied. The estrogen-receptor was prepared in 1 mM molybdate which stabilized the receptor; but both salt- and ATP-transformation of estrogen receptors occurred. The binding of molybdate-stabilized cytosol [3H]estradiol-receptor complexes to the various resins revealed that salt-activation by 0.3 M KCl caused the greatest binding (5-6-fold) to DNA-cellulose as compared to other resins. However, 5 mM ATP-dependent activation of receptor-complexes resulted in preferential binding to ATP-Sepharose. Activated cytosol [3H]H1285-receptor complexes bound all the resins to a lesser degree when compared to [3H]estradiol-receptor complexes. Partially purified receptor complexes also showed different resin-binding patterns for salt- and ATP-mediated activation. These findings suggest that salt-activation is different than ATP-activation. Further, the differential magnitude of [3H]estradiol- and [3H]H1285-receptor activation suggests that estrogen-receptor complexes are "fully" activated as compared to "partially" activated antiestrogen-receptor complexes.  相似文献   

20.
Author index     
Binding of dexamethasone · receptors with isolated nuclei, DNA-cellulose and cellulose has been compared with respect to dependence on salt concentration and resistance to KCl extraction and DNAase I digestion. A solution of cytoplasmic dexamethasone-receptor complexes was prepared by the incubation of rat thymus cells with steroid at 3°C and breaking the cells by hypotonic lysis. Activation of the complexes was accomplished by warming the solution at 25°C for 15 min. Activation significantly increased the ability of dexamethasone · receptors to bind to nuclei and DNA-cellulose but not to cellulose. Dexamethasone-receptor complexes bound to nuclei at 3°C are completely resistant to extraction with 0.1 M KCl, 76% resistant to 0.2 M KCl and 20% resistant to 0.4 M KCl. Dexamethasone · receptors bound to DNA-cellulose are 45% resistant to extraction with 0.1 M and 0.2 M KCl and 29% resistant to 0.4 M KCl extraction. Cellulose-bound dexamethasone · receptors are not resistant to any of these extractions. DNAase I treatment releases 60% of the dexamethasone · receptors bound to DNA-cellulose but only 13% of those bound to nuclei, though at least 60% of the nuclear DNA is solubilized. The presence of 0.15 M KCl decreases binding of activated dexamethasone · receptors to nuclei by 73% but to DNA-cellulose by only 17%. Pretreatment of nuclei with 0.1–0.4 M KCl reduces their capacity to bind activated dexamethasone · receptors by 90% whereas similar treatment reduces the capacity of DNA-cellulose to bind dexamethasone · receptors by only 29%. Nuclei extracted with 0.1 M KCl appear to have a limited capacity to accept dexamethasone · receptors. These studies demonstrate that binding of dexamethasone · receptors to nuclei and DNA-cellulose differs by (a) the higher resistance of nuclear complexes to KCl and DNAase I treatment; (b) the much greater sensitivity of nuclei to KCl treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号