首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
梁前进 《生物学通报》2007,42(11):11-13
4 表观遗传学重点内容之二--染色体重塑 基因的活化和转录需要一系列重要的染色质变化,如染色质去凝集、核小体变成疏松的开放式结构等,使转录因子等调节因子更易接近和结合核小体DNA.与基因表达调节所伴随的这类染色质结构改变现象就叫做染色质重塑(chromatin remodeling),需要特异的因子结合在启动子和增强子等顺式作用元件上,并和RNA聚合酶之问建立起有效的联系.染色质重塑的机理涉及特殊的蛋白复合体.  相似文献   

2.
核小体定位研究进展   总被引:4,自引:0,他引:4  
核小体定位在诸如转录调控、DNA复制和修复等多种细胞过程中起着重要作用。基因组上核小体位置的确定涉及DNA、转录因子、组蛋白修饰酶和染色质重塑复合体之间的相互作用。核小体定位、组蛋白修饰、染色质重塑等问题已成为目前遗传学研究的热点——表观遗传学——的重要研究内容。文章从核小体定位基本概念、核小体定位与基因表达调控的关系、核小体定位实验研究和理论预测工作等几个方面总结了核小体定位的最新研究进展。  相似文献   

3.
染色质装配、修饰和重塑复合体,以及它们和核小体、染色质等一起形成的超大分子复合体的精细结构解析,对于在原子水平揭示表观遗传信息建立、维持和调控的分子机制至关重要.近年来,迅速发展的冷冻电镜三维重构技术对于解析这些多亚基、大分子质量、柔性超大分子复合体的结构带来了很好的机遇.本文综述了冷冻电镜三维重构技术在表观遗传学相关的结构研究领域中的一些应用和进展.  相似文献   

4.
表观遗传调控是真核生物基因表达精细调控的重要组成部分,主要包括DNA甲基化、组蛋白修饰和染色质重塑。其中,染色质重塑因子可影响组蛋白修饰酶和转录因子与特定位点的结合,在基因表达调控中占有重要地位。INO80复合物是进化上保守的染色质重塑复合物,能利用ATP水解获得的能量促进核小体的滑动和驱逐。INO80复合物除了在DNA复制、修复中发挥重要功能外,还通过改变DNA可及性调控酿酒酵母的基因表达。本文综述了染色质重塑复合物的分类及组成,重点介绍了酿酒酵母多亚基复合物INO80在基因表达调控中的重要功能,包括驱逐RNA聚合酶Ⅱ、响应信号转导途径和改变基因表达水平等,并着重总结了其在酿酒酵母环境胁迫响应机理中的研究进展。深入研究INO80染色质重塑复合物的功能,可为理解真核生物精细代谢调控的机制,并进一步开发基于染色质重塑等表观调控水平的微生物代谢工程和合成生物学改造策略,提高菌株的环境胁迫耐受性和发酵性能提供基础。  相似文献   

5.
染色质装配、修饰和重塑复合体,以及它们和核小体、染色质等一起形成的超大分子复合体的精细结构解析,对于在原子水平揭示表观遗传信息建立、维持和调控的分子机制至关重要.近年来,迅速发展的冷冻电镜三维重构技术对于解析这些多亚基、大分子质量、柔性超大分子复合体的结构带来了很好的机遇.本文综述了冷冻电镜三维重构技术在表观遗传学相关的结构研究领域中的一些应用和进展.  相似文献   

6.
真核细胞中的染色质重塑因子种类繁多,多数以蛋白多聚体的形式存在于细胞中.不同的染色质重塑因子在特定时间定位于特定的核小体上,通过改变染色质结构,影响基因转录活性,进而确保细胞内各种生物学过程的正确运行.另外,染色质重塑因子根据所含功能结构域的不同,大致分为SWI/SNF、ISWI、CHD和INO80四大家族,不同的染色质重塑因子之间既有蛋白质结构和酶活性的相似性,各自又有其特异性.本综述的宗旨在于全面概括和总结染色质重塑因子的分类、结构特点以及其在细胞内的生物学功能,为深入研究染色质重塑因子的生物学功能,尤其是在发育和疾病发生中的作用机制提供理论基础.  相似文献   

7.
真核细胞中的染色质重塑因子种类繁多,多数以蛋白多聚体的形式存在于细胞中.不同的染色质重塑因子在特定时间定位于特定的核小体上,通过改变染色质结构,影响基因转录活性,进而确保细胞内各种生物学过程的正确运行.另外,染色质重塑因子根据所含功能结构域的不同,大致分为SWI/SNF、ISWI、CHD和INO80四大家族,不同的染色质重塑因子之间既有蛋白质结构和酶活性的相似性,各自又有其特异性.本综述的宗旨在于全面概括和总结染色质重塑因子的分类、结构特点以及其在细胞内的生物学功能,为深入研究染色质重塑因子的生物学功能,尤其是在发育和疾病发生中的作用机制提供理论基础.  相似文献   

8.
9.
基因组上核小体位置的确定涉及DNA、RNA聚合酶、转录因子、后转录修饰与组蛋白变异、组蛋白修饰酶和染色质重塑复合体之间的相互作用。真核状态基因组的DNA是被包裹在核小体中,故理解控制核小体沿DNA定位的原理对于进一步理解组蛋白结合所执行的基因功能是非常必要的。而核小体的定位在诸多细胞过程中起着重要重要,比如转录调控、DNA复制和修饰等。因此核小体定位已逐渐成为目前遗传学研究的热点以及表观遗传学的重要研究内容并且也将在未来生物学研究中占据相当重要的位置。本综述以果蝇为例,全面介绍核小体定位的研究现状和未来方向。  相似文献   

10.
表观遗传是指非DNA突变的可遗传表型。从分子水平上来说,表观遗传是因染色质的修饰或构象变化而引起的基因表达变化。SWI/SNF染色质重塑复合体即是表观遗传分子机制中的重要一员;SWI/SNF复合体依赖ATP水解的能量打开核小体结构,使转录因子可以接近DNA,从而有利于转录调节。SWI/SNF复合体核心组分INI1/hSNF5负责与多种转录调节蛋白结合。这些转录调节因子有些是重要的原癌蛋白,如c-myc、ALL1、核抗原2和GADD43等;也有重要  相似文献   

11.
The inter-relationship between DNA repair and ATP dependent chromatin remodeling has begun to become very apparent with recent discoveries. ATP dependent remodeling complexes mobilize nucleosomes along DNA, promote the exchange of histones, or completely displace nucleosomes from DNA. These remodeling complexes are often categorized based on the domain organization of their catalytic subunit. The biochemical properties and structural information of several of these remodeling complexes are reviewed. The different models for how these complexes are able to mobilize nucleosomes and alter nucleosome structure are presented incorporating several recent findings. Finally the role of histone tails and their respective modifications in ATP-dependent remodeling are discussed.  相似文献   

12.
ATP-dependent chromatin remodeling complexes enable rapid rearrangements in chromatin structure in response to developmental cues. The ATPase subunits of remodeling complexes share homology with the helicase motifs of DExx box helicases. Recent single-molecule experiments indicate that, like helicases, many of these complexes use ATP to translocate on DNA. Despite sharing this fundamental property, two key classes of remodeling complexes, the ISWI class and the SWI/SNF class, generate distinct remodeled products. SWI/SNF complexes generate nucleosomes with altered positions, nucleosomes with DNA loops and nucleosomes that are capable of exchanging histone dimers or octamers. In contrast, ISWI complexes generate nucleosomes with altered positions but in standard structures. Here, we draw analogies to monomeric and dimeric helicases and propose that ISWI and SWI/SNF complexes catalyze different outcomes in part because some ISWI complexes function as dimers while SWI/SNF complexes function as monomers.  相似文献   

13.
The ATPase ISWI is a subunit of several distinct nucleosome remodeling complexes that increase the accessibility of DNA in chromatin. We found that the isolated ISWI protein itself was able to carry out nucleosome remodeling, nucleosome rearrangement, and chromatin assembly reactions. The ATPase activity of ISWI was stimulated by nucleosomes but not by free DNA or free histones, indicating that ISWI recognizes a specific structural feature of nucleosomes. Nucleosome remodeling, therefore, does not require a functional interaction between ISWI and the other subunits of ISWI complexes. The role of proteins associated with ISWI may be to regulate the activity of the remodeling engine or to define the physiological context within which a nucleosome remodeling reaction occurs.  相似文献   

14.
Chromatin structure and dynamics: functional implications   总被引:4,自引:0,他引:4  
  相似文献   

15.
16.
17.
18.
ATP-dependent chromatin remodeling activities function to manipulate chromatin structure during gene regulation. One of the ways in which they do this is by altering the positions of nucleosomes along DNA. Here we provide support for the ability of these complexes to move nucleosomes into positions in which DNA is unraveled from one edge. This is expected to result in the loss of histone-DNA contacts that are important for retention of one H2A/H2B dimer within the nucleosome. Consistent with this we find that several chromatin remodeling complexes are capable of catalyzing the exchange of H2A/H2B dimers between chromatin fragments in an ATP-dependent reaction. This provides eukaryotes with additional means by which they may manipulate chromatin structure.  相似文献   

19.
Members of the SNF2 family of ATPases often function as components of multi-subunit chromatin remodeling complexes that regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Biochemically dissecting the contributions of individual subunits of such complexes to the multi-step ATP-dependent chromatin remodeling reaction requires the use of assays that monitor the production of reaction products and measure the formation of reaction intermediates. This JOVE protocol describes assays that allow one to measure the biochemical activities of chromatin remodeling complexes or subcomplexes containing various combinations of subunits. Chromatin remodeling is measured using an ATP-dependent nucleosome sliding assay, which monitors the movement of a nucleosome on a DNA molecule using an electrophoretic mobility shift assay (EMSA)-based method. Nucleosome binding activity is measured by monitoring the formation of remodeling complex-bound mononucleosomes using a similar EMSA-based method, and DNA- or nucleosome-dependent ATPase activity is assayed using thin layer chromatography (TLC) to measure the rate of conversion of ATP to ADP and phosphate in the presence of either DNA or nucleosomes. Using these assays, one can examine the functions of subunits of a chromatin remodeling complex by comparing the activities of the complete complex to those lacking one or more subunits. The human INO80 chromatin remodeling complex is used as an example; however, the methods described here can be adapted to the study of other chromatin remodeling complexes.  相似文献   

20.
Blossey R  Schiessel H 《The FEBS journal》2011,278(19):3619-3632
With nucleosomes being tightly associated with the majority of eukaryotic DNA, it is essential that mechanisms are in place that can move nucleosomes 'out of the way'. A focus of current research comprises chromatin remodeling complexes, which are ATP-consuming protein complexes that, for example, pull or push nucleosomes along DNA. The precise mechanisms used by those complexes are not yet understood. Hints for possible mechanisms might be found among the various spontaneous fluctuations that nucleosomes show in the absence of remodelers. Thermal fluctuations induce the partial unwrapping of DNA from the nucleosomes and introduce twist or loop defects in the wrapped DNA, leading to nucleosome sliding along DNA. In this minireview, we discuss nucleosome dynamics from two angles. First, we describe the dynamical modes of nucleosomes in the absence of remodelers that are experimentally fairly well characterized and theoretically understood. Then, we discuss remodelers and describe recent insights about the possible schemes that they might use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号