首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
游离及固定化果糖基转移酶部分酶学性质的比较研究   总被引:4,自引:0,他引:4  
 从诱变、筛选的米曲霉GX0 0 10菌株所产生的果糖基转移酶 ,经过纯化和固定化操作分别制备游离酶和固定化酶 ,对两者的酶学性质进行了比较研究 .结果表明 ,两者在蔗糖转化为蔗果低聚糖的酶促反应中 ,最适pH为 5 5,在pH5 0~ 7 5之间酶活性相对稳定 .游离酶和固定化酶的适宜温度范围分别是 4 5~ 52℃和 4 0~ 55℃ .在 55℃保温 60min ,酶活性保存率分别是 61 6%和 87 5% .固定化酶的热稳定性提高 .0 1mmol LHg2 +和 1mmol LAg+能完全抑制游离酶的活性 ,但只能部分抑制固定化酶的活性 ,1mmol L的Ti2 +能完全抑制两者的活性 .以蔗糖为底物时 ,游离酶的米氏常数Km=2 15mmol L ,而固定化酶Km =386mmol L .游离酶只能使用一次 ,固定化酶反复使用 54次后 ,剩余活力为 55 2 % .用 55% (W V)蔗糖溶液与固定化酶在pH5 0 ,4 6℃下作用 12h ,可获得61 5% (总低聚糖 总糖 )产物 ,其中蔗果五糖含量达到 7 2 % .  相似文献   

2.
利用IPTG诱导含有川芎咖啡酸-3-O-甲基转移酶(LCCOMT)的大肠杆菌工程菌E.coli BL21(DE3)/pET28a-LCCOMT,经Ni~(2+)亲和层析、质谱鉴定获得纯化的LCCOMT。采用海藻酸钙凝胶包埋固定LCCOMT,单因素实验考察最佳固定化条件对固定化酶活力的影响,并确定了固定化酶的最适温度、pH值、Km、Vmax与反应批次等酶学性质。确定的条件分别为海藻酸钠质量分数1.5%,CaCl_2浓度2.5 g/L,固定化时间2 h,载体与酶质量比40 000∶1。通过正交实验确定最终固定化条件为CaCl_2浓度2.5 g/L,海藻酸钠质量分数2.0%,固定化时间1 h,载体与酶质量分数35 000∶1时,固定化效果最好,此时相对酶活力为75.43%。固定化酶的最适催化温度为37℃、最适pH值为7.5,较游离酶分别增加0℃和0.5;Km、Vmax分别增高0.40和0.74;实验确定固定化酶的半衰期,连续使用6次,酶活力仍保留50%。  相似文献   

3.
为有效提高D-泛解酸内酯水解酶的利用效率,笔者选择合适的载体对酶进行固定化,在优化固定化条件的同时研究固定化酶的最佳反应条件和酶学性质。结果表明,选择的最佳固定化载体为树脂D380,最佳固定化条件为:酶的吸附添加量为30 U(以1 g湿树脂计),吸附pH 7.0,吸附温度30℃,吸附时间5 h,戊二醛体积分数0.1%,交联时间1 h。在最优条件下得到的固定化酶的比酶活为(11.5±0.12) U/g。固定化酶的最适反应温度为37℃,最适反应pH为7.5。游离酶和固定化酶的动力学常数K_m分别为170.25和207.60 mmol/L。Ca~(2+)对酶促反应有激活作用,Mn~(2+)对该酶有较强的抑制作用。  相似文献   

4.
【目的】筛选鉴定一株产酯酶用于选择性拆分(R,S)-α-乙基-2-氧-1-吡咯烷乙酸甲酯的菌株,利用该菌株固定化细胞催化拆分外消旋底物。【方法】通过富集培养、罗丹明B平板初筛及复筛培养获得一株选择性拆分(R,S)-α-乙基-2-氧-1-吡咯烷乙酸甲酯的菌株,通过对其形态、生理生化特征及16S r DNA序列分析,确立该菌株系统发育地位。优化了利用硅藻土-戊二醛吸附交联法对该菌体细胞固定化的条件,研究固定化细胞催化性质及操作稳定性。【结果】该菌为革兰氏阴性菌,鉴定其为甲基球状菌属(Methylopila)。固定化体系最优条件:聚乙烯亚胺0.15%(V/V),戊二醛0.2%(V/V),硅藻土6 g/L,菌体质量浓度100 g/L。与游离细胞相比,固定化细胞最适p H由8.0变为8.5,最适温度由35°C变为40°C,p H稳定性和温度稳定性都有所提高。Cu~(2+)、Mn~(2+)、Ca~(2+)能促进酶活,Zn~(2+)、Fe~(2+)抑制酶活。固定化细胞的有机溶剂耐受性较游离细胞有所提高。动力学分析细胞固定化后Km值变大,底物亲和力降低。利用固定化细胞水解(R,S)-α-乙基-2-氧-1-吡咯烷乙酸甲酯,底物浓度200 g/L,反应20 h,保留构型为S型,得率47.8%,对映体过量值ees为99.4%,重复使用12次后仍保留初始酶活的80%以上。【结论】开发了利用Methylopila sp.cxzy-L013固定化细胞择性拆分(R,S)-α-乙基-2-氧-1-吡咯烷乙酸甲酯的工艺,该工艺具有良好的工业应用前景。  相似文献   

5.
以凹凸棒石黏土为原料,制备γ-Fe2O3-凹土超顺磁性纳米复合材料(γ-Fe2O3-ATP)作为猪胰脂肪酶(PPL)固定化的载体,利用透射电子显微镜(TEM)、N2吸附脱附等温图(BET)、振动试样磁强计(VSM)等对材料进行表征,同时对固定化条件和固定化酶的相关性质进行了研究。结果表明:制备的γ-Fe2O3-ATP是介孔材料,比表面积为102.63 m2/g,平均孔径为10.862 nm,饱和磁化强度为8.915 emu/g,其作为载体能实现固定化酶与反应介质简单、快速分离回收和重复利用。在固定化时间为4 h及pH 6.0时制备的固定化酶效果最佳;经过6 h高温保存后固定化酶可保留初始酶活的52%,而游离酶仅保留初始酶活的19%,同时固定化酶在重复使用5次后酶活仍保留初始酶活的60%。  相似文献   

6.
将标记有荧光探针FITC(异硫氰基荧光素)的脂肪酶固定化,通过测定活性和荧光光谱,探究各种因素对固定化后荧光标记脂肪酶性质的影响,并分析活性、构象和荧光光谱三者之间的联系。研究结果表明:在固定化脂肪酶过程中,聚乙二醇400二丙烯酸酯能形成合理的网格结构,使酶活较高;配体诱导酶的催化构象,使酶活性提高到未诱导酶的2倍以上;配体抽提能使脂肪酶活性中心得到释放从而提高催化活力。固定化脂肪酶的稳定性大大提高,在90℃、强酸强碱下固定化酶仍保有原酶70%、60%以上的活性;用盐酸胍、脲等溶解变性剂浸泡15d后,酶活性仍然可以保持初始活性的70%以上。荧光光谱能较好地反映脂肪酶的活性和构象变化,最适pH和温度下脂肪酶的荧光强度最低,在溶解变性剂中,荧光强度随时间延长而逐渐降低,这表明不同条件下脂肪酶构象经历的去折叠过程不同。  相似文献   

7.
将嗜热脂肪芽孢杆菌的氨基酰化酶(amaA)基因克隆到E.coli中进行表达,同时利用渗透交联法固定化E.coli细胞,并对固定化细胞氨基酰化酶进行了温度和pH等理化性质的初步探讨.结果显示amaA基因在E.coli中获得了高效表达,酶活性达1043U/g湿菌体.最佳固定化条件为3%卡拉胶,30%细胞.当以1.25%多乙烯多胺渗透交联固定化细胞10min和0.1%戊二醛硬化处理20min,酶学性质研究表明,酶反应的最适温度为65℃,最适pH为7.0.细胞固定化后仍保留有83%活性,pH稳定范围更广,热稳定性更高,55℃酶活性不损失,4℃保存23d仍保留有固定化时73.6%的酶活性,连续10批次转化酶活性仅损失约20%,预示该固定化E.coli具有良好的操作和保存稳定性.  相似文献   

8.
为了从牛瘤胃的微生物中获取新型的木聚糖酶,采用直接法提取牛瘤胃内容物微生物总DNA,构建宏基因组文库,通过功能驱动法筛选得到1个木聚糖酶基因(yh-1),该基因大小为987 bp,编码329个氨基酸;SDS-PAGE电泳分析YH-1的相对分子量为36.2 kDa,该酶的最适反应温度和最适反应pH是50℃和8.0~8.5;该酶有较强的温度稳定性,50℃条件下保温60 min,仍保留90%以上的剩余酶活性,65~75℃保留80%以上的剩余酶活性;2 mmol/L Zn~(2+)、Na~+、Co~(2+)和Ni~(2+)对该酶具有一定的激活作用;经过24 h的处理后,该酶可以从玉米芯、稻草和甘蔗叶中分别获得0.014、0.381和0.19 mg的还原糖。上述特征使得该酶在烘焙体系以及其他领域具有广泛的应用前景。  相似文献   

9.
近年来溶胶-凝胶法固定脂肪酶已成为研究热点。选用TMOS、MTMS、ETMS和PTMS 4种硅烷试剂对黑曲霉脂肪酶进行了固定化研究。固定化的最佳配方为ETMS/TMOS=5:1、水与硅烷试剂分子比为8;固定化脂肪酶的固定率为80.2%、相对活性为136.3%;以乳化橄榄油作为底物,在50℃和pH4.0的条件下,固定化脂肪酶与游离脂肪酶Km分别为1.899×10-4M和2.789×10-4M;最适反应pH均为pH4.0,固定化脂肪酶在pH4.0~pH5.5之间其活性能保持95%以上;固定化脂肪酶最适反应温度为60℃,较游离脂肪酶提高了10℃;固定化脂肪酶的酸碱稳定性和热稳定性较非固定化酶有显著的提高。固定化脂肪酶的使用寿命和保存稳定性良好,使用12次后仍能够保留71.7%活性,在室温避光条件下保存180天后仍可保留79.2%活性。  相似文献   

10.
【目的】探讨卷枝毛霉中苹果酸酶同工酶V的性质。【方法】克隆卷枝毛霉中编码苹果酸酶同工酶V的mel基因并在大肠杆菌BL21(DE3)中表达,利用His标签纯化获得了高纯度的重组酶BLME1,并进行酶学性质分析。【结果】该重组酶最适pH为8.0,最适温度为33℃,在此条件下酶活达到92.8 U/mg,对底物L-苹果酸和NADP~+的米氏常数K_m值为0.74960±0.06129 mmol/L和0.22070±0.01810 mmol/L,最大反应速度V_(max)分别为72.820±1.077 U/mg和86.110±1.665 U/mg。金属离子Mg~(2+)、Mn~(2+)、Co~(2+)、Ni~(2+)可以激活BLME1的活性,而Ca~(2+)、Cu~(2+)对BLME1活性则有抑制作用,中间代谢产物草酰乙酸和α-酮戊二酸也会抑制BLME1的活性,但琥珀酸却对BLME1有激活作用。【结论】本实验调查了卷枝毛霉苹果酸酶同工酶V的最适反应温度和pH、动力学参数,以及各种金属离子和中间代谢产物对酶活力的影响,这为以后深入研究该苹果酸酶的功能提供了理论依据和参考。  相似文献   

11.
Featuring unique planar structure, large surface area and biocompatibility, graphene oxide (GO) has been widely taken as an ideal scaffold for the immobilization of various enzymes. In this regard, nickel‐coordinated graphene oxide composites (GO‐Ni) were prepared as novel supporters for the immobilization of formate dehydrogenase. The catalytic activity, stability and morphology were studied. Compared with GO, the enzyme loading capacity of GO‐Ni was enhanced by 5.2‐fold, besides the immobilized enzyme GO‐Ni‐FDH exhibited better thermostability, storage stability and reuse stability than GO‐FDH. GO‐Ni‐FDH retained 40.9% of its initial activity after 3 h at 60°C, and retained 31.4% of its initial relative activity after 20 days’ storage at 4°C. After eight times usages, GO‐Ni‐FDH maintained 63.8% of its initial activity. Mechanism insights of the multiple interactions of enzyme with the GO‐Ni were studied, considering coordination bonds, hydrogen bonds, electrostatic forces, coordination bonds, and etc. A practical and simple immobilization strategy by metal ions coordination for multimeric dehydrogenase was developed.  相似文献   

12.
Alpha-chymotrypsin (CT) as model enzyme was conjugated onto the novel carboxyl-functionalized superparamagnetic nanogels, prepared via facile photochemical in situ polymerization, by using 1-ethyl-3-(3-dimethylaminepropyl) carbodiimide (EDC) as coupling reagent. The obtained magnetic immobilized enzyme was characterized by use of photo correlation spectroscopy (PCS), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) measurement, thermogravimetric (TG) analysis and vibrating sample magnetometer (VSM) measurement. PCS result showed that the immobilized enzyme was 68 nm in diameter while the magnetic nanogels with carboxyl groups were only 38 nm; enzyme immobilization led to pronounced change in size. Superparamagnetic properties were retained for Fe3O4 after enzyme immobilization while slightly reducing its value of saturation magnetization. Immobilization and surface coating did not induce phase change of Fe3O4 by XRD analysis. The binding capacity was 30 mg enzyme/g and 37.5 mg enzyme/g nanogel determined by TG analysis and BCA protein assay, respectively. Specific activity of the immobilized CT was calculated to be 0.77 U/(mg min), 82.7% as that of the free form.  相似文献   

13.
Saccharomyces cerevisiae invertase was chemically modified with chitosan and further immobilized on sodium alginate-coated chitin support. The yield of immobilized protein was determined as 85% and the enzyme retained 97% of the initial chitosan-invertase activity. The optimum temperature for invertase was increased by 10 °C and its thermostability was enhanced by about 9 °C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was four-fold more resistant to thermal treatment at 65 °C than the native counterpart. The biocatalyst prepared retained 80% of the original catalytic activity after 50 h under continuous operational regime in a packed bed reactor.  相似文献   

14.
A series of silica-based bifunctional adsorbents containing both metal-chelating groups and epoxy groups for the concomitant purification and immobilization of His-tagged protein switch RG13, a potential bioreceptor for developing maltose biosensors, were prepared by controlling the ratio of iminodiacetic acid-conjugated silane (GLYMO-IDA) and silane (GLYMO) used for surface modification. The bifunctional adsorbent prepared with a [GLYMO-IDA]/[GLYMO] ratio of 0.2, containing a [metal chelating group]/[epoxy group] ratio of 1.42, was shown to exhibit a metal chelating capacity of 88.42 ± 15.91 μmole Cu2+/g, a protein adsorption capacity of 1.81 ± 0.19 mg/g and a superior selectivity over the other bifunctional adsorbents. Results of kinetic studies showed that selective adsorption and covalent bond formation at 4 °C were achieved in 1 h and 15 h, respectively, which allowed the sequential adsorption and covalent immobilization of protein switch RG13. A protein immobilization yield of 94.6 % and a global activity yield of 63.4 % were obtained, giving an immobilized protein switch RG13 with an enzymatic activity of 4.57 ± 0.19 U/g, under optimal conditions at pH 8.0 and 40 °C. In the repeated-batch operation, the bifunctional adsorbent-immobilized RG13 retained 91 % of the original activity after 20 cycles, 39 % higher than the counterpart prepared with monofunctional metal chelate adsorbent mediated solely by coordinate linkages.  相似文献   

15.
The immobilization of papain on the mesoporous molecular sieve MCM‐48 (with a pore size of 6.2 nm in diameter) with the aid of glutaraldehyde, and the characteristics of this immobilized papain are described. The optimum conditions for immobilization were as follows: 20 mg native free enzyme/g of the MCM‐48 and 0.75 % glutaraldehyde, 2 h at 10–20 °C and pH 7.0. Under these optimum conditions for immobilization, the activity yield [%] of the immobilized enzyme was around 70 %. The influence of the pH on the activity of the immobilized enzyme was much lower compared to the free enzyme. The thermostability of the immobilized enzyme, whose half‐life was more than 2500 min, was greatly improved and was found to be significantly higher than that of the free enzyme (about 80 min). The immobilized enzyme also showed good operational stability, and the activity of the immobilized enzyme continued to maintain 76.5 % of the initial activity even after a 12‐day continuous operation. Moreover, the immobilized enzyme still exhibited good storage stability. From these results, papain immobilized on the MCM‐48 with the aid of glutaraldehyde, can be used as a high‐performance biocatalyst in biotechnological processing, in particular in industrial and medical applications.  相似文献   

16.
In this study, polyacrylic acid‐based nanofiber (NF) membrane was prepared via electrospinning method. Acetylcholinesterase (AChE) from Electrophorus electricus was covalently immobilized onto polyacrylic acid‐based NF membrane by demonstrating efficient enzyme immobilization, and immobilization capacity of polymer membranes was found to be 0.4 mg/g. The novel NF membrane was synthesized via thermally activated surface reconstruction, and activation with carbonyldiimidazole upon electrospinning. The morphology of the polyacrylic acid‐based membrane was investigated by scanning electron microscopy, Fourier Transform Infrared Spectroscopy, and thermogravimetric analysis. The effect of temperature and pH on enzyme activity was investigated and maxima activities for free and immobilized enzyme were observed at 30 and 35°C, and pH 7.4 and 8.0, respectively. The effect of 1 mM Mn2+, Ni2+, Cu2+, Zn2+, Mg2+, Ca2+ ions on the stability of the immobilized AChE was also investigated. According to the Michaelis–Menten plot, AChE possessed a lower affinity to acetylthiocholine iodide after immobilization, and the Michaelis–Menten constant of immobilized and free AChE were found to be 0.5008 and 0.4733 mM, respectively. The immobilized AChE demonstrated satisfactory reusability, and even after 10 consecutive activity assay runs, AChE maintained ca. 87% of its initial activity. Free enzyme lost its activity completely within 60 days, while the immobilized enzyme retained approximately 70% of the initial activity under the same storage time. The favorable reusability of immobilized AChE enables the support to be employable to develop the AChE‐based biosensors.  相似文献   

17.
In this study, the combined use of the selectivity of metal chelate affinity chromatography with the capacity of epoxy supports to immobilize poly‐His‐tagged recombinant benzoylformate decarboxylase from Pseudomonas putida (BFD, E.C. 4.1.1.7) via covalent attachment is shown. This was achieved by designing tailor‐made magnetic chelate–epoxy supports. In order to selectively adsorb and then covalently immobilize the poly‐His‐tagged BFD, the epoxy groups (300 µmol epoxy groups/g support) and a very small density of Co2+‐chelate groups (38 µmol Co2+/g support) was introduced onto magnetic supports. That is, it was possible to accomplish, in a simple manner, the purification and covalent immobilization of a histidine‐tagged recombinant BFD. The magnetically responsive biocatalyst was tested to catalyze the carboligation reactions. The benzoin condensation reactions were performed with this simple and convenient heterogeneous biocatalyst and were comparable to that of a free‐enzyme‐catalyzed reaction. The enantiomeric excess (ee) of (R)‐benzoin was obtained at 99 ± 2% for the free enzyme and 96 ± 3% for the immobilized enzyme. To test the stability of the covalently immobilized enzyme, the immobilized enzyme was reused in five reaction cycles for the formation of chiral 2‐hydroxypropiophenone (2‐HPP) from benzaldehyde and acetaldehyde, and it retained 96% of its original activity after five reaction cycles. Chirality 27:635–642, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Soybean seed coat peroxidase (SBP) was immobilized on various polyaniline-based polymers (PANI), activated with glutaraldehyde. The most reduced polymer (PANIG2) showed the highest immobilization capacity (8.2 mg SBP?g?1 PANIG2). The optimum pH for immobilization was 6.0 and the maximum retention was achieved after a 6-h reaction period. The efficiency of enzyme activity retention was 82%. When stored at 4°C, the immobilized enzyme retained 80% of its activity for 15 weeks as evidenced by tests performed at 2-week intervals. The immobilized SBP showed the same pH-activity profile as that of the free SBP for pyrogallol oxidation but the optimum temperature (55°C) was 10°C below that of the free enzyme. Kinetic analysis show that the Km was conserved while the specific Vmax dropped from 14.6 to 11.4 µmol min?1 µg?1, in agreement with the immobilization efficiency. Substrate specificity was practically the same for both enzymes. Immobilized SBP showed a greatly improved tolerance to different organic solvents; while free SBP lost around 90% of its activity at a 50% organic solvent concentration, immobilized SBP underwent only 30% inactivation at a concentration of 70% acetonitrile. Taking into account that immobilized HRP loses more than 40% of its activity at a 20% organic solvent concentration, immobilized SBP performed much better than its widely used counterpart HRP.  相似文献   

19.
Li T  Wang N  Li S  Zhao Q  Guo M  Zhang C 《Biotechnology letters》2007,29(9):1413-1416
Pectinase was immobilized on a sodium alginate support using glutaraldehyde and retained 66% activity. The optimal pH for activity shifted from 3.0 to 3.5 after immobilization; however, the optimum temperature remained unchanged at 40°C. The immobilized enzyme also had a higher thermal stability and reusability than the free enzyme, and retained 80% of initial activity after 11 batch reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号