首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
闭环刺激是深部脑刺激(deep brain stimulation,DBS)的重要发展方向之一,有望用于治疗多种脑神经系统疾病.与常规开环的长时间持续刺激不同,闭环刺激通常采用短促的高频脉冲序列.而神经元对于高频刺激的响应存在暂态过程,在初期的短时间内会发生很大变化,从而影响闭环刺激的作用.为了研究这种暂态过程,在大鼠...  相似文献   

2.
为了正确检测和研究高频电刺激(high frequencystimulation,HFS)期间神经元的动作电位发放活动,进而深入揭示深部脑刺激治疗神经系统疾病的机制,本课题研究HFS期间锋电位波形的变化.在麻醉大鼠海马CA1区的输入神经通路Schaffer侧支上,施加1~2 min时长的100或者200 Hz顺向高频刺激(orthodromic-HFS,O-HFS),利用微电极阵列采集刺激下游神经元的多通道锋电位信号,并获得由O-HFS经过单突触传导激活的中间神经元的单元锋电位波形及其特征参数.结果表明,O-HFS使得锋电位的幅值明显减小而半高宽明显增加,以基线记录为基准计算百分比值,O-HFS期间锋电位的降支幅值和升支幅值分别可减小20%和40%左右,半高宽则增加10%以上.并且,在大量神经元同时产生动作电位期间,或者在比200 Hz具有更大兴奋作用的100 Hz刺激期间,锋电位波形的改变更多,幅值的减小可达50%,宽度的增加可达20%.可以推测,高频电刺激对于神经元的兴奋作用可能升高细胞膜电位,从而改变细胞膜离子通道的活动特性,导致动作电位波形的改变.这些结果支持深部脑刺激具有兴奋性调节作用的假说,对于正确分析高频电刺激期间神经元锋电位活动具有指导意义,也为进一步研究深部脑刺激(DBS)治疗脑神经系统疾病的机制提供了重要线索.  相似文献   

3.
持续高频刺激改变短刺激产生的神经网络效应   总被引:1,自引:1,他引:0  
不同时长的电脉冲高频刺激(high frequency stimulation,HFS)对于脑神经系统具有不同的作用.其中,数秒时长的短促HFS可通过"点燃"效应制作动物癫痫模型,也可以产生长时间保持的突触可塑性变化,而数分钟以上的长时HFS却可以安全地用于临床的深部脑刺激,治疗多种脑疾病.因此推测,持续的HFS可以改变短促刺激产生的效应.为了验证此推测,在大鼠海马CA1区的输入轴突纤维Schaffer侧支上,分别施加5 s和2 min两种时长的100 Hz HFS,并监测刺激结束后下游神经元群体对于单脉冲测试的响应电位,即群峰电位(population spike,PS).结果显示,5 s短HFS结束时会紧跟后放电痫样活动,并且,从测试脉冲诱发的PS幅值和潜伏期可见,短HFS诱导的兴奋性增强可以维持数十分钟.反之,2 min的长HFS结束时紧随之后的是数十秒无发放活动的静息期,而且,PS在数分钟内即恢复到HFS前的基线水平.这些结果表明,长时HFS的后期刺激可以改变前期短促刺激对于下游神经网络的作用,即消除短刺激可能产生的长时程兴奋效应.此发现对于深入了解高频刺激的作用机制、促进深部脑刺激的临床应用具有重要意义.  相似文献   

4.
深部脑刺激(deep brain stimulation,DBS)在许多神经系统疾病的临床治疗上都展现出良好的应用前景,然而,其作用机制尚不明确.常规DBS采用高频刺激(high frequency stimulation,HFS)的脉冲序列,这种窄脉冲最容易激活神经元结构中的轴突部分,通过轴突的投射,将HFS的作用传播至下游神经元.因此,为了探讨DBS的作用机制,并鉴于海马脑区是治疗癫痫和痴呆症等疾病的重要靶点,我们研究了海马区轴突HFS对于下游神经元的作用.对麻醉大鼠的海马CA1区传入神经通路Schaffer侧支施加1 min的100 Hz高频刺激,记录并提取下游CA1区锥体神经元和中间神经元的单元锋电位.计算锋电位的发放率,以及它们与刺激脉冲之间的锁相值(phase-locking value,PLV)和潜伏期,以定量分析HFS期间神经元动作电位发放的变化趋势.结果显示,在传入轴突上施加HFS时,初期会诱发下游神经元群体同步产生动作电位(即群峰电位).在HFS后期(群峰电位消失之后),两类神经元的单元锋电位发放仍然持续,并且发放率较稳定.但是,锋电位与刺激脉冲之间的锁相性逐渐减弱、潜伏期逐渐延长.而且,与中间神经元相比较,锥体神经元锋电位的锁相性更弱、潜伏期更长.这些结果表明,持续的轴突HFS可以诱导下游神经元产生非同步的活动,高频脉冲刺激引起的不完全轴突传导阻滞可能是导致该现象产生的主要原因.本文的研究为揭示脑刺激的作用机制提供了重要信息.  相似文献   

5.
目的 深部脑刺激(deep brain stimulation,DBS)利用持续的电脉冲高频刺激(high-frequency stimulation,HFS)调控神经元的活动,可望用于治疗更多脑疾病。为了深入了解HFS的作用机制,促进DBS的发展,本文研究轴突HFS在引起轴突阻滞期间神经元胞体的改变。方法 在麻醉大鼠海马CA1区的锥体神经元轴突上施加脉冲频率为100 Hz的1 min逆向高频刺激(antidromic high-frequency stimulation,A-HFS)。为了研究胞体的响应,利用线性垂直排列的多通道微电极阵列,记录刺激位点上游CA1区锥体神经元胞体附近各结构分层上的诱发电位,包括A-HFS脉冲诱发的逆向群峰电位(antidromic population spike,APS)以及A-HFS期间施加的顺向测试脉冲诱发的顺向群峰电位(orthodromic population spike,OPS),并计算诱发电位的电流源密度(current-source density,CSD),用于分析A-HFS期间锥体神经元胞体附近动作电位的生成和传导。结果 锥体神经...  相似文献   

6.
目的:探讨损毁或高频刺激丘脑底核(STN)对帕金森病(PD)大鼠黑质致密部神经元的保护作用及其可能的发生机制。方法:应用每羟基多巴胺(6-OHDA)制备偏侧PD大鼠模型,于丘脑底核(STN)区分别植入刺激电极给以高频电刺激,或注入鹅膏蕈氨酸(IA)进行损毁后,观察PD大鼠行为改变;运用尼氏(Nissl)染色、DNA原位末端标记技术(TUNEL)、免疫组化方法检测并分析黑质致密部(SNc)神经元存活及凋亡发生情况。结果:刺激组黑质致密部凋亡神经元的阳性率显著低于模型组与损毁组(P〈0.05)。与正常大鼠相比,刺激组Bel-2染色呈强阳性,Bel-2/Bax比值较高,模型组、损毁组SNc区的Bcl-2表达有所下调,Bax表达增加,Bcl-2/Bax比值降低(P〈0.05),虽然损毁组SNc的凋亡阳性神经元少于模型组(P〈0.05),但二者的Bel-2、Bax的表达及Bel-2/Bax比值无显著性差异(P〉0.05)。结论:损毁或高频刺激SIN对PD大鼠黑质SNc神经元存在保护作用,高频刺激的长期保护作用更为明显。  相似文献   

7.
Liu Q  Han D  Wang S  Zou ZY 《生理学报》2005,57(5):573-586
本文旨在探讨电刺激右侧尾壳核(caudate putamen nucleus,CPu)对双侧丘脑外侧背核(1aterodorsal thalamic nucleus,LD)单个神经元放电和海马(hippocampus,HPC)电图瞬时时间编码形式的调制性影响。用21只雄性Sprague-Dawley大鼠(150-250g),重复急性强直电刺激(60Hz,2S,0.4-0.6mA)右侧尾壳核(acute tanizafion of the right caudate putamen nucleus,ATRC)诱发大鼠癫痫模型,4通道同步记录双侧LD神经元单位放电和双侧HPC深部电图。结果如下:重复施加ATRC可以诱导大鼠出现(1)双侧LD-HPC癫痫电网络间的功能性环状联系。起始点为对侧LD神经元原发性单位后放电,随后出现同侧LD神经元原发性单位后放电,然后呈现同侧HPC电图原发性后放电,最终引起对侧HPC电图脱同步化效应;(2)双侧LD神经元放电脉冲间隔(interspike intervals,ISIs)散点分布形式与刺激前呈现镜像对称特征。对侧LD神经元原发性后放电的ISI点分布基于底层而且持续时间较长,具有更加明显的突触可塑性特征;(3)随着ATRC串次的增加,对侧LD神经元原发性单位后放电间的爆发式放电时程逐渐延长,可以募集增强海弓电图同步化电活动;显现对侧LD神经元单个放电脉冲与HPC电图γ电振荡(20-25Hz)间的锁相(phase-lock)和锁时(time-lock)关系。结果提示:ATRC可以募集形成具有联系的双侧LD神经元放电和HPC电图特征性的神经信息编码形式,以对侧更加明显。这些跨越大脑半球、涉及多结构的功能性神经信息网络的建立很可能是癫痫发生、发展和扩布的重要信息编码机制。  相似文献   

8.
目的:观察和比较丘脑底核高频电刺激与低频电刺激治疗帕金森病(PD)的临床效果。方法:对入选的31名PD患者行双侧丘脑底核电刺激手术,术后1个月,在高频刺激条件下,进行UPDRS运动评分,同时对震颤、强直、运动迟缓、中轴症状进行评分;术后6个月,在关闭刺激、高频刺激和低频刺激三种刺激条件,同样进行相关评分。结果:术后1个月和术后6个月,除中轴症状外,UPDRS运动评分和震颤、强直、运动迟缓评分均较术前明显降低(P0.05)。术后6个月,HFS、LFS刺激条件下,UPDRS运动评分和震颤、强直、运动迟缓评分均较OFF降低(P0.05),但中轴症状评分无明显降低(P0.05)。术后6个月,LFS较HFS,各项评分均无明显差异。结论:丘脑底核高频和低频电刺激均能改善PD的运动功能,对震颤、强直和运动迟缓疗效明显,但对中轴症状均无明显治疗效果。  相似文献   

9.
目的:观察高频刺激丘脑底核(STN)对帕金森病(PD)大鼠模型纹状体 (STR)神经元自发放电的影响.方法:应用6-羟基多巴胺(6-OHDA)制备偏侧PD大鼠模型,丘脑底核区插入刺激电极进行高频刺激,采用细胞外单位记录的方法观察STR神经元自发放电频率的改变.结果:正常大鼠刺激后STR神经元反应主要以兴奋型反应为主, PD大鼠STR神经元反应主要以兴奋抑制型为主,且随着刺激时间的延长,抑制持续时间逐渐增加,持续时间与刺激时间密切相关(r=0.94).结论:刺激STN可使PD大鼠纹状体的异常放电得到改善,提示高频电刺激STN可作为一种有效的治疗PD的方法.  相似文献   

10.
目的:利用氟哌啶醇致僵直大鼠模拟帕金森病(PD)的运动不能,通过高频电刺激下丘脑后核(PH),观察大鼠僵直和运动能力的变化,从而探讨PH在PD治疗中潜在的应用价值。方法:将成年雄性SD大鼠随机分为PH刺激组、假刺激组和对照组,对PH刺激组和假刺激组大鼠双侧PH置入双极刺激电极,腹腔注射氟哌啶醇30min后,PH刺激组给予持续高频电刺激(130Hz,60μs,100μA),分别利用爬杆实验和跑步机实验评价大鼠僵直程度和运动能力。结果:腹腔注射氟哌啶醇1.0mg/kg后,①大鼠呈僵直状态,其潜伏期为167.88±17.88S,给予双侧PH高频电刺激后潜伏期显著缩短至77.5±21.27s(P〈0.01)。②跑步机试验显示大鼠跑动速度和跑动距离显著下降,分别为5.78±0.90cm/s和8.06±4.35m(P〈0.01),给予双侧PH高频电刺激后显著提高跑动速度和跑动距离,分别为12.72±3.66cm/s和98.61±96.75m(P〈0.01)。结论:腹腔注射氟哌啶醇可模拟帕金森病的僵直和运动不能症状,双侧高频电刺激PH可显著拮抗氟哌啶醇对大鼠僵直和运动不能的作用,提示PH为DBS治疗帕金森病运动不能的有效刺激靶点,为临床DBS刺激PH治疗PD提供实验依据。  相似文献   

11.
本文采用电极阵列检测技术,在大鼠海马脑切片上诱导出稳定的癫痫样放电,分析、研究130 Hz的高频电刺激(high-frequency stimulation,HFS) CA3区时,海马切片在癫痫发作间期放电(inter-ictal discharges,IID)和发作期放电(ictal discharges,ID)的各项参数、癫痫样放电地起始位点、传播方向和传输速率以及各频段的功率谱密度.结果显示:高频电刺激可以有效地降低癫痫发作期的幅值、减少持续时间、增长潜伏时间、抑制癫痫样放电由IID向ID的转变等.提示高频电刺激抑制癫痫的作用机制是通过促进神经元之间的抑制性传输系统,并且抑制海马神经元之间的兴奋性连接,从而达到抑制效果.  相似文献   

12.
目的:利用氟哌啶醇致僵直大鼠模拟帕金森病(PD)的运动不能,通过高频电刺激下丘脑后核(PH),观察大鼠僵直和运动能 力的变化,从而探讨PH 在PD治疗中潜在的应用价值。方法:将成年雄性SD 大鼠随机分为PH 刺激组、假刺激组和对照组,对 PH 刺激组和假刺激组大鼠双侧PH 置入双极刺激电极,腹腔注射氟哌啶醇30 min 后,PH刺激组给予持续高频电刺激(130 Hz,60 us, 100 uA),分别利用爬杆实验和跑步机实验评价大鼠僵直程度和运动能力。结果:腹腔注射氟哌啶醇1.0 mg/kg 后,①大鼠呈僵 直状态,其潜伏期为167.88± 17.88 s, 给予双侧PH 高频电刺激后潜伏期显著缩短至77.5± 21.27 s(P<0.01)。②跑步机试验显示大 鼠跑动速度和跑动距离显著下降,分别为5.78± 0.90 cm/s 和8.06± 4.35 m(P<0.01),给予双侧PH高频电刺激后显著提高跑动速 度和跑动距离,分别为12.72± 3.66 cm/s 和98.61± 96.75 m(P<0.01)。结论:腹腔注射氟哌啶醇可模拟帕金森病的僵直和运动不 能症状,双侧高频电刺激PH 可显著拮抗氟哌啶醇对大鼠僵直和运动不能的作用,提示PH 为DBS治疗帕金森病运动不能的有效 刺激靶点,为临床DBS 刺激PH 治疗PD 提供实验依据。  相似文献   

13.
感觉、运动或自主神经系统的异常病理活动与疼痛和痉挛等多种神经机能障碍有关。千频交流电(kilohertz frequency alternating current,KHFAC)刺激是一种阻断异常病理活动在外周神经内传导的有效方法,它在缓解相关神经机能障碍方面具有临床应用潜力。KHFAC产生的神经传导阻断受千频信号波形和参数、阻断电极设置和位置以及神经纤维类型和直径等因素影响,具有快速性、可控性、可逆性、局部作用和副作用小的特点。但是,在产生完全传导阻断前,KHFAC首先在靶向神经上激活一簇高频初始放电,这种初始响应可能导致肌肉抽搐或疼痛感。同时,在撤去KHFAC后处于阻断状态的靶向神经需要经历一段时间才能恢复正常传导能力,这是该技术导致的后续效应。目前,关于KHFAC阻断神经传导的生物物理机制假说包括千频信号诱发K+通道激活和Na+通道失活。本文首先介绍了KHFAC技术的电生理实验研究方法和计算模型仿真方法,然后综述目前关于KHFAC作用下神经传导阻断的研究进展,重点论述初始响应特性及消除方法、传导阻断的后续效应、刺激波形和参数的影响、电极设置与位置的影响以及该技术潜在的临床应用,同时归纳KHFAC阻断神经传导的生物物理机制,最后对该技术未来的相关研究进行展望。  相似文献   

14.
We investigated the effects of repetitive high-frequency (10 sec-1) nerve stimulation on the time course of evoked and miniature end-plate currents (EPC and mEPC, respectively) in the frog neuromuscular junction. The data obtained indicate that at a physiological Ca2+ level in the bath medium, 10 sec-1 stimulation results in prolongation of the growth phase of multiquantum EPC without any effect on the mEPC time course. It is concluded that timing of acetylcholine quantum secretion may be affected by high-frequency stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号