首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During infection, Yersinia enterocolitica exports Yop proteins via a type III secretion pathway. Secretion is activated when the environmental concentration of calcium ions is below 100 microM (low-calcium response). Yersiniae lacking yopN (lcrE), yscB, sycN, or tyeA do not inactivate the type III pathway even when the concentration of calcium is above 100 microM (calcium-blind phenotype). Purified YscB and SycN proteins form cytoplasmic complexes that bind a region including amino acids 16 to 100 of YopN, whereas TyeA binds YopN residues 101 to 294. Translational fusion of yopN gene sequences to the 5' end of the npt reporter generates hybrid proteins that are transported by the type III pathway. The signal necessary and sufficient for the type III secretion of hybrid proteins is located within the first 15 codons of yopN. Expression of plasmid-borne yopN, but not of yopN(1-294)-npt, complements the calcium-blind phenotype of yopN mutants. Surprisingly, yopN mutants respond to environmental changes in calcium concentration and secrete YopN(1-294)-Npt in the absence but not in the presence of calcium. tyeA is required for the low-calcium regulation of YopN(1-294)-Npt secretion, whereas sycN and yscB mutants fail to secrete YopN(1-294)-Npt in the presence of calcium. Experiments with yopN-npt fusions identified two other signals that regulate the secretion of YopN. yopN codons 16 to 100 prevent the entry of YopN into the type III pathway, a negative regulatory effect that is overcome by expression of yscB and sycN. The portion of YopN encoded by codons 101 to 294 prevents transport of the polypeptide across the bacterial double membrane envelope in the presence of functional tyeA. These data support a model whereby YopN transport may serve as a regulatory mechanism for the activity of the type III pathway. YscB/SycN binding facilitates the initiation of YopN into the type III pathway, whereas TyeA binding prevents transport of the polypeptide across the bacterial envelope. Changes in the environmental calcium concentration relieve the TyeA-mediated regulation, triggering YopN transport and activating the type III pathway.  相似文献   

2.
Successful establishment of Yersinia infections requires the type III machinery, a protein transporter that injects virulence factors (Yops) into macrophages. It is reported here that the Yersinia type III pathway responds to environmental signals by transporting proteins to distinct locations. Yersinia enterocolitica cells sense an increase in extracellular amino acids (glutamate, glutamine, aspartate, and asparagine) that results in the activation of the type III pathway. Another signal, provided by serum proteins such as albumin, triggers the secretion of YopD into the extracellular medium. The third signal, a decrease in calcium concentration, appears to be provided by host cells and causes Y. enterocolitica to transport YopE and presumably other virulence factors across the eukaryotic plasma membrane. Mutations in several genes encoding regulatory molecules (lcrG, lcrH, tyeA, yopD, yopN, yscM1, and yscM2) bypass the signal requirement of the type III pathway. Together these results suggest that yersiniae may have evolved distinct secretion reactions in response to environmental signals.  相似文献   

3.
4.
The secretion signal of extracellular metalloprotease B that is secreted without a signal peptide by the Gram-negative phytopathogenic bacterium Erwinia chrysanthemi is shown by deletion and gene fusion analyses to be located within the last 40 C-terminal amino acids. Secretion of a peptide containing only this region of the protease requires the same three secretion factors (PrtD, PrtE, and PrtF) that were previously shown to be required for the secretion of the full-length protease. This secretion signal can also be recognized, albeit inefficiently, by the analogous secretion machinery of alpha-hemolysin, another protein with a C-terminal secretion signal that is secreted by some strains of the Gram-negative bacterium Escherichia coli. The secretion signal was fused to an internal 200-amino acid fragment from the sequence of the cytoplasmic protein amylomaltase to promote its specific secretion by the protease secretion pathway. Almost exactly the same sequence as that identified as the protease B secretion signal was also found at the C terminus of metalloprotease C that is also secreted by E. chrysanthemi.  相似文献   

5.
Pathogenic Yersinia spp. secrete Yop proteins via the type III pathway. yopQ codons 1 to 15 were identified as a signal necessary and sufficient for the secretion of a fused reporter protein. Frameshift mutations that alter codons 2 to 15 with little alteration of yopQ mRNA sequence do not abolish type III transport, suggesting a model in which yopQ mRNA may provide a signal for secretion (D. M. Anderson and O. Schneewind, Mol. Microbiol. 31:1139-1148, 2001). In a recent study, the yopE signal was truncated to codons 1 to 12. All frameshift mutations introduced within the first 12 codons of yopE abolished secretion. Also, multiple synonymous mutations that changed the mRNA sequence of yopE codons 1 to 12 without altering the amino acid sequence did not affect secretion. These results favor a model whereby an N-terminal signal peptide initiates YopE into the type III pathway (S. A. Lloyd et al., Mol. Microbiol. 39:520-531, 2001). It is reported here that codons 1 to 10 of yopQ act as a minimal secretion signal. Further truncation of yopQ, either at codon 10 or at codon 2, abolished secretion. Replacement of yopQ AUG with either of two other start codons, UUG or GUG, did not affect secretion. However, replacement of AUG with CUG or AAA and initiating translation at the fusion site with npt did not permit Npt secretion, suggesting that the translation of yopQ codons 1 to 15 is a prerequisite for secretion. Frameshift mutations of yopQ codons 1 to 10, 1 to 11, and 1 to 12 abolished secretion signaling, whereas frameshift mutations of yopQ codons 1 to 13, 1 to 14, and 1 to 15 did not. Codon changes at yopQ positions 2 and 10 affected secretion signaling when placed within the first 10 codons but had no effect when positioned in the larger fusion of yopQ codons 1 to 15. An mRNA mutant of yopQ codons 1 to 10, generated by a combination of nine synonymous mutations, was defective in secretion signaling, suggesting that the YopQ secretion signal is not proteinaceous. A model is discussed whereby the initiation of YopQ polypeptide into the type III pathway is controlled by properties of yopQ mRNA.  相似文献   

6.
Pathogenic Yersinia species escape the infected host's defense mechanisms by targeting cytotoxic Yop proteins into the cytoplasm of macrophages via a type III secretion pathway. Two separate secretion signals contained in YopE were identified, each of which were sufficient but not necessary for the secretion of reporter molecules. One signal is located within the coding sequence of the first 15 amino acids and is sufficient for the secretion of fusion proteins but not required for YopE secretion. The second signal is located downstream at residues 15–100 of YopE and is only recognized by the type III machinery when it is bound to SycE. We propose the existence of two independent mechanisms that allow for the secretion of Yop proteins.  相似文献   

7.
The NH2-terminal signal region comprising of approximately 70% length of the prepro-sequence of the pGKL killer precursor protein was found to direct an efficient secretion of the mouse alpha-amylase into the culture medium of Saccharomyces cerevisiae. The alpha-amylase molecule secreted into the culture medium was identified by both immuno-blotting and assay of the enzyme activity. The amount of alpha-amylase secreted via the killer toxin signal was comparable to that directed by the leader sequence of mating factor alpha. The secretion of alpha-amylase using the killer toxin signal was blocked at 37C but not at 25C in sec18-1 host, indicating that alpha-amylase is exported through the normal secretion pathway of S. cerevisiae.  相似文献   

8.
In the fission yeast Schizosaccharomyces pombe, there are relatively few signal peptides available and most reports of their activity have not been comparative. Using sequence information from the S. pombe genome database we have identified three putative signal peptides, designated Cpy, Amy and Dpp, and compared their ability to support secretion of green fluorescent protein (GFP). In the comparison we also included the two well-described secretion signals derived from the precursors of, respectively, the Saccharomyces cerevisiae alpha-factor and the S. pombe P-factor. The capability of the tested signal peptides to direct secretion of GFP varied greatly. The alpha-factor signal did not confer secretion to GFP and all the produced GFP was trapped intracellular. In contrast, the Cpy signal peptide supported efficient secretion of GFP with yields approximating 10 mg/L. We also found that the use of an attenuated version of the S. cerevisiae URA3 marker substantially increases vector copy number and expression yield in fission yeast.  相似文献   

9.
Aims: To test seven selected putative signal peptides from Lactobacillus plantarum WCFS1 in terms of their ability to drive secretion of two model proteins in Lact. plantarum, and to compare the functionality of these signal peptides with that of well‐known heterologous signal peptides (Usp45, M6). Methods and Results: Signal peptide functionality was assessed using a series of modular derivatives of the pSIP vectors for peptide pheromone‐controlled high‐level gene expression in lactobacilli. Several of the constructs with homologous signal peptides yielded similar or higher reporter protein activities than constructs with heterologous signal peptides. Two of the homologous signal peptides (Lp_0373 and Lp_0600) appeared as especially promising candidates for directing secretion, as they were among the best performing with both reporter proteins. Conclusions: We have identified homologous signal peptides for high‐level secretion of heterologous proteins in Lact. plantarum. With the model proteins, some of these performed better than commonly used heterologous signal peptides. Significance and Impact of the Study: The homologous signal peptides tested out, in this study, could be useful in food‐grade systems for secretion of interesting proteins in Lact. plantarum. The constructed modular secretion vectors are easily accessible for rapid signal peptide screening.  相似文献   

10.
The type III machinery of Yersinia transports Yop proteins across the bacterial envelope. The minimal secretion signal of yopQ is located in codons 1-10 that, when fused in frame to the neomycin phosphotransferase gene, is sufficient to promote type III secretion of YopQ(1-10)-Npt. Frame-shift mutations, generated by nucleotide insertions or deletions following the AUG start and suppressed at the fusion site with npt, abrogate signalling of yopQ(1-10) but not of yopQ(1-15). By generating transversions of every single nucleotide in yopQ(1-10), we identified 10 nucleotide positions in codons 2, 3, 5, 7, 9 and 10 that were each required for substrate recognition. One transversion that abolishes secretion, uridyl 9 to adenyl (U9A), is a synonymous codon 3 mutation that retains the original amino acid as confirmed by Edman degradation analysis, suggesting that the mRNA but not the amino acid sequence of yopQ(1-10) is involved in secretion signalling. Although transversion of U8A abrogates signalling of yopQ(1-10), fusion of yopQ codons 11-15 restores secretion. The nucleotides that are required for this suppression by yopQ(11-15) were identified and revealed both synonymous and non-synonymous mutations. Frame-shift mutations introduced into just this suppressor region (codons 11-15) did not abrogate its ability to suppress mutations in the minimal secretion signal (codons 1-10). Thus, elements downstream of the minimal secretion signal of YopQ increase the efficiency of YopQ secretion and suppress mutations elsewhere in the secretion signal.  相似文献   

11.
12.
Yersinia type III secretion machines transport substrate proteins into the extracellular medium or into the cytoplasm of host cells. Translational hybrids, involving genes that encode substrates as well as reporter proteins that otherwise cannot travel the type III pathway, identified signals that promote transport of effector Yops into host cells. Signals for the secretion of substrates into high calcium media were hitherto unknown. By exploiting attributes of translational hybrids between yopR, whose product is secreted, and genes that encode impassable proteins that jam the secretion machine, we isolated yopR mutations that abolish substrate recognition. Similar to effector Yops, an N-terminal or 5' signal in codons 1-11 is required to initiate YopR into the type III pathway. YopR secretion cannot be completed and translational hybrids cannot impose a block without a second signal, positioned at codons 131-149. Silent mutations in the second signal abrogate function and the phenotype of other mutations can be suppressed by secondary mutations predicted to restore base complementary in a 3' stem-loop structure of the yopR mRNA.  相似文献   

13.
Type III secretion systems (T3SSs) secrete needle components, pore-forming translocators, and the translocated effectors. In part, effector recognition by a T3SS involves their N-terminal amino acids and their 5' mRNA. To investigate whether similar molecular constraints influence translocator secretion, we scrutinized this region within YopD from Yersinia pseudotuberculosis. Mutations in the 5' end of yopD that resulted in specific disruption of the mRNA sequence did not affect YopD secretion. On the other hand, a few mutations affecting the protein sequence reduced secretion. Translational reporter fusions identified the first five codons as a minimal N-terminal secretion signal and also indicated that the YopD N terminus might be important for yopD translation control. Hybrid proteins in which the N terminus of YopD was exchanged with the equivalent region of the YopE effector or the YopB translocator were also constructed. While the in vitro secretion profile was unaltered, these modified bacteria were all compromised with respect to T3SS activity in the presence of immune cells. Thus, the YopD N terminus does harbor a secretion signal that may also incorporate mechanisms of yopD translation control. This signal tolerates a high degree of variation while still maintaining secretion competence suggestive of inherent structural peculiarities that make it distinct from secretion signals of other T3SS substrates.  相似文献   

14.
The twin-arginine translocation (TAT) system secretes fully folded proteins that contain a twin-arginine motif within their signal sequence across the cytoplasmic membrane in bacteria. Using a green fluorescent protein fused with a TAT signal sequence, we demonstrated that Mycobacterium smegmatis contains a TAT system. By inactivating individual genes, we showed that three genes (tatA, tatB, and tatC) are required for a functional TAT system in M. smegmatis. The tat mutants exhibited a decreased growth rate and altered colony morphology compared to the parent strain. Comparison of the secreted proteins of the deltatatC and parent strain by two-dimensional polyacrylamide gel electrophoresis revealed an alteration in the secretion of at least five proteins, and one of the major TAT-dependent secreted proteins was identified as beta-lactamase (BlaS). The genome of M. smegmatis was analyzed with the TATFIND program, and 49 putative TAT substrates were identified, including the succinate transporter DctP. Because disruption of the TAT secretion system has a direct effect on the physiology of M. smegmatis and homologs of the TAT proteins are also present in the genome of Mycobacterium tuberculosis, the TAT secretion system or its substrates may be good candidates for drug or vaccine development.  相似文献   

15.
Secretion of recombinant proteins in heterologous host has drawn attention for its simpler purification and downstream processes. Searching for secretion aid molecules to improve protein secretion can be done through synthetic biology, screening of genome data and proteome-based approach. In the present study, the extracellular proteome on starch-containing medium of Bacillus lehensis G1 was analyzed to identify naturally secreted proteins with signal peptide. A total of 87 protein spots were identified by mass spectrometry, which were categorized mostly in the metabolism of carbohydrates and related molecules (20%). Over-expression and secretion studies were performed for all the 14 selected signal peptides fused to a reporter protein, cyclomaltodextrin glucanotransferase (CGTase). All clones were found to allow CGTase to be excreted into the medium, as observed and measured from the iodine plate assay and enzyme activity assay. Compared to native signal peptide (G1) of CGTase, signal peptide of GlcNAc-binding protein A (GAP) significantly improved CGTase activities by 735% and 205% in extracellular and periplasmic compartment, respectively, with an increase of only ∼1.7 fold the amount of β-galactosidase (cell lysis) in the medium. GAP has the highest secretion rate of 45.6 U/ml/h among all clones, where physicochemical characteristics of signal peptide play significant role.  相似文献   

16.
By predicting the potential signal peptides from proteins that are naturally secreted by Pichia pastoris, we identified three possible endogenous signal peptides: Scw, Dse and Exg. We compared their capability to mediate the secretion of enhanced green fluorescent protein (EGFP) and Candida antarctica lipase B (CALB) with that of the Saccharomyces cerevisiae α-factor prepro-signal. EGFP entered the secretory pathway of P. pastoris and was efficiently secreted into the culture medium by all three endogenous peptides. Further, these three putative endogenous signal peptides were also effective in secreting CALB. These endogenous signal peptides thus have the potential to mediate the efficient secretion of heterologous proteins in P. pastoris.  相似文献   

17.
We previously identified three well-dispersed mutations, E978-K, F989-L and D1009-R within the haemolysin A signal region, located at positions –46, –35 and –15, with respect to the C-terminus, respectively. Each mutation reduces the efficiency of secretion two- to threefold leaving 30–45% of the wild-type activity. We have constructed by in vitro manipulations double mutants of HlyA carrying all combinations of these mutations and a triple mutant carrying all three mutations. The effects on secretion were determined and the results, including residual levels of secretion with the triple mutant of only 0.6%, compared with the wild type, indicated that these residues may interact to form a single function in the wild-type signal. To test this further, we developed a secretion competition assay in order to classify signal mutations. We demonstrated that a CIZ-HlyA fusion protein, containing the C-terminal 81 kDa of HlyA fused to virtually the whole LacZ protein, strongly inhibits the secretion of the wild-type HlyA co-expressed In the same cell. The properties of the fusion indicate that it blocks the translocator. The three mutations singly and in combinations were recombined in vitro into the 3′-end of the hybrid gene. In every case, the presence of a mutation in the secretion signal of the hybrid protein alleviated the inhibition of secretion of the co-expressed HiyA. All the mutations are therefore essentially recessive and we propose that they all affect an early function, probably recognition of the translocator, rather than a subsequent step involved in translocation or final release of the toxin to the medium. This would indicate that residues involved in recognition for steps  相似文献   

18.
The linear double-stranded DNA plasmid pGKL1 in yeast encodes a killer toxin consisting of 97-kDa, 31-kDa and 28-kDa subunits. A 128-kDa protein precursor of the 97-kDa and 31-kDa subunits, was first synthesized with a 29-amino-acid extension at its NH2-terminus as a secretion signal sequence. In the present study, the property of this signal sequence was studied by the analysis of a fusion protein with mouse alpha-amylase. Using the secretion signal sequence of the killer protein, the mouse alpha-amylase was successfully secreted into the culture medium. An intracellular precursor form of alpha-amylase was identified and purified. Analysis of the NH2-terminal sequence of this precursor molecule indicated that it corresponded to the secretory intermediate (pro form) of alpha-amylase with the removal of the hydrophobic segment (Met1-Gly16) of the secretion signal. Both the secretion of alpha-amylase into the culture medium and the detection of the pro-alpha-amylase species in the cells were prohibited by a sec 11 mutation, or by the conversion of Gly to Val at the 16th position of the secretion signal. These results strongly suggest that the cleavage occurs between Gly16 and Leu17 by a signal peptidase, and that this cleavage is required for the secretion of alpha-amylase into the medium. Based on the data from the NH2-terminal amino acid sequences of secreted alpha-amylases, we conclude that the 29-amino-acid secretion signal present in the 128-kDa killer toxin precursor protein is a prepro structure.  相似文献   

19.
【背景】沙眼衣原体(Chlamydia trachomatis,Ct)的分泌蛋白在Ct与宿主细胞的相互作用、感染发育周期及致病过程中发挥着至关重要的作用。GlgA蛋白是课题组前期研究发现的一种新的Ct分泌蛋白,其表达和分泌的具体机制及作用还不清楚。【目的】寻找调控CtGlgA蛋白表达和分泌的分子机制,为后续Ct致病机制研究提供实验基础和新思路。【方法】采用Signal P 4.1软件对GlgA蛋白N端进行信号肽预测分析,并用细菌分泌蛋白特异性阻断剂C16和C1化合物分别或同时处理Ct感染的He La细胞,观察阻断Ⅱ型、Ⅲ型分泌途径对GlgA蛋白分泌的影响;经新生霉素处理、噬斑筛选及穿梭质粒转染技术,构建Ct质粒缺失株和缺失互补株,并鉴定质粒编码基因在两种菌株的缺失及表达情况;间接免疫荧光法观察质粒缺失对GlgA表达和分泌的影响。【结果】GlgA蛋白N端无信号肽序列,细菌Ⅱ型、Ⅲ型分泌途径特异性阻断剂C16和C1化合物不能阻断GlgA的胞浆分泌;Ct质粒缺失株CTD1的质粒编码基因pgp7丢失,且质粒编码蛋白Pgp3及基因组编码蛋白GlgA的表达和分泌现象均消失;Ct缺失互补株CTD1-pGFP::SW2重新获得pgp7基因,并恢复Pgp3蛋白和GlgA的表达和分泌。【结论】初步证实Ct糖原合酶GlgA蛋白的表达和分泌不依赖细菌Ⅱ型和Ⅲ型分泌途径,而且与衣原体质粒密切相关。  相似文献   

20.
Recently, we have identified a novel topogenic sequence at the C terminus of Escherichia coli haemolysin (HlyA) which is essential for its efficient secretion into the medium. This discovery has introduced the possibility of using this secretion system for the release of chimeric proteins from E. coli directly into the medium. We have now successfully fused this C-terminal signal to a hybrid protein containing a few residues of beta-galactosidase and the majority of the E. coli outer membrane porin OmpF lacking its own N-terminal signal sequence. We find that this chimeric protein is specifically translocated across the inner and outer membranes and is released into the medium. In addition, we have further localized the HlyA secretion signal to the final 113 amino acids of the C terminus. In fact, a specific secretion signal appears to reside at least in part within the last 27 amino acids of HlyA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号