首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Historical information about source populations of invasive species is often limited; therefore, genetic analyses are used. We compared inference about source populations from historical and genetic data for the oyster‐associated clam, Gemma gemma that invaded California from the USA Atlantic coast. Location Mid‐Atlantic (North Carolina, Maryland), Northeastern (New Jersey, New York, Massachusetts) and the California coasts (Elkhorn Slough, San Francisco Bay, Bolinas Lagoon, Tomales Bay, Bodega Harbor). Methods The documented history of transplantation of Eastern oysters to California was reviewed. Cytochrome c oxidase subunit I (COI) sequences from recent and archived clams were examined in a haplotype network. We used AMOVA to detect geographic genetic structure and a permutation test for significant reductions in diversity. Results Chesapeake Bay oysters were transplanted to New York prior to shipment to San Francisco Bay and from there to peripheral bays. Gemma in the Northeastern and Mid‐Atlantic regions were genetically differentiated. In California, populations in Bodega Harbor and Tomales Bay were genetically similar to those in the Mid‐Atlantic area while clams in San Francisco Bay, Elkhorn Slough and Bolinas Lagoon resembled populations in the Northeastern region. In California, genetic variation was not highest in San Francisco Bay despite greater magnitude of oyster plantings. Haplotypes varied over time in native and introduced populations. Main Conclusions Historical records and inferences from genetics agree that both Northeastern and Mid‐Atlantic regions were sources for Gemma in California. Only complex genetic hypotheses reconcile the strong segregation of haplotypes in California to the historical evidence of mixing in their proximate source (New York). These hypotheses include sorting of mixtures of haplotypes or selection in non‐native areas. Haplotype turnover in San Francisco and Massachusetts samples over time suggests that the sorting hypothesis is plausible. We suggest, however, that Gemma was introduced independently and recently to Tomales Bay and Bodega Harbor.  相似文献   

2.
Evolutionary biologists have been puzzled by the success of introduced species: despite founder effects that reduce genetic variability, invasive species are still successful at colonizing new environments. It is possible that the evolutionary processes during the post-colonization period may increase the genetic diversity and gene flow among invasive populations over time, facilitating their long-term success. Therefore, genetic diversity and population structure would be expected to show greater temporal variation for successful introduced populations than for native populations. We studied the population genetics of the walnut husk fly, Rhagoletis completa, which was introduced into California from the Midwestern US in the early 1900s. We used microsatellites and allozymes to genotype current and historic fly populations, providing a rare perspective on temporal variability in population genetic parameters. We found that introduced populations showed greater temporal fluctuations in allele frequencies than native populations. Some introduced populations also showed an increase in genetic diversity over time, indicating multiple introductions had occurred. Population genetic structure decreased in both native and introduced populations over time. Our study demonstrates that introduced species are not at equilibrium and post-colonization processes may be important in ameliorating the loss of genetic diversity associated with biological invasions.  相似文献   

3.
The rate of introduction of exotic marine species has dramatically increased during the 19th and 20th centuries. Exemplifying this trend, the marine gastropod Ocinebrellus inornatus was first detected outside its native range in 1924 on the American Pacific coast, then in 1995 on the French Atlantic coast. To determine the origin of the French populations of this invasive species, we compared a French population with populations collected in Asia—the native range—and with a population collected in the United States. Analyses of mitochondrial DNA and allozyme polymorphism revealed that the French and American populations were closely related and substantially differentiated from the Asian populations. According to our results, the most likely scenario is that the source population of the French Atlantic coast populations was located in the United States. Indeed, taken altogether, the genetic structure of Asian populations, the time lag separating the introduction on the American Pacific coast from the introduction on the French Atlantic coast and the high level of genetic diversity in the two introduced areas (indicating an absence of major founder events) are hardly compatible with a scenario in which French population resulting only from primary introduction events from the native area. Finally, although similar, the French and American populations were not identical. Thus, even if the main source population of the French populations was located in the United States, the genetic structure of French populations may have been modified by cryptic and recurrent introduction events directly from Asia.  相似文献   

4.
Patterns of genetic variation within a species may be used to infer past events in the evolutionary history of marine species. In the present study we aimed to compare the genetic diversity of the red gorgonian Paramuricea clavata in the Atlantic Ocean and the Mediterranean Sea. For genetic markers we used microsatellites and a mitochondrial gene fragment. Our results revealed a distinct genetic composition and diversity between the Mediterranean and the Atlantic. The Mediterranean samples had higher microsatellite heterozygosity, allelic richness and private allelic richness. The hypotheses that can explain these patterns are the isolation of Atlantic populations and/or a founder effect. Additionally, a clear difference was obtained from the mitochondrial locus, since sequences from Atlantic and Mediterranean samples diverged by 1%, which is high for soft corals.  相似文献   

5.
Avicennia germinans L. is a widespread mangrove species occupying the west coast of Africa and the Atlantic and Pacific coasts of the Americas from the Bahamas to Brazil and Baja California to Peru. An amplified fragment length polymorphism (AFLP) molecular analysis was carried out to assess genetic architecture within this species and to evaluate the effects of the Atlantic Ocean and the Central American Isthmus (CAI) on population and regional genetic diversity and differentiation. In total, 349 polymorphic AFLP fragments were identified among 144 individuals from 14 populations from the east Atlantic, west Atlantic and east Pacific. Levels of genetic diversity varied considerably among populations, but were generally higher in populations from the east Atlantic. Regional differentiation between the Pacific coast and Atlantic populations was greater than between east and west Atlantic populations, suggesting that the CAI has had an important influence on population genetic structure in this species. The lower level of divergence of east Atlantic from west Atlantic populations suggests some dispersal across the Atlantic Ocean, although migration rates are probably low; Nm from GST equal to 0.41 and accumulation of private and rare alleles in the east Atlantic. Population differentiation did not appear to follow an isolation by distance model and has probably resulted from complex patterns of population bottlenecks, and founder events due to landscape changes during the Pleistocene, particularly in the west Atlantic. The molecular data provide no support for the treatment of east Atlantic populations as a separate species A. africana.  相似文献   

6.
Rhithropanopeus harrisii (Gould 1841) has a native distribution from New Brunswick (Canada) to Veracruz (Mexico) and is considered an invasive species in northwestern North American (Oregon and California), South American (Brazil) and European estuaries and rivers. In Europe, it was observed for the first time in 1874, in The Netherlands. We sequenced and analyzed part of the cytochrome oxidase subunit I gene (mitochondrial DNA) of eight populations, three from the east coast of the United States of America (USA) and five from Europe, in order to assess their genetic diversity and to determine a potential founder population. European populations are characterized by a lower number of haplotypes than the whole native region of the eastern USA, suggesting that genetic bottlenecks occurred during the European colonisation. Along the North American East Coast, there is evidence of clearcut genetic heterogeneity, New Jersey being the most similar population in its genetic structure to the postulated Europe-founding population. Also the different European populations are heterogeneous and there is a tendency of higher genetic diversity in the populations founded earlier. R. harrisii is still in the process of expansion in Europe and may have been introduced once or repeatedly by different invasion mechanisms. The pronounced lack of gene flow among populations is of great ecological significance, since it may facilitate rapid adaptation and specialization to local conditions within single estuarine systems.  相似文献   

7.
High genetic diversity is thought to characterize successful invasive species, as the potential to adapt to new environments is enhanced and inbreeding is reduced. The red swamp crayfish, Procambarus clarkii, native to northeastern Mexico and south-central USA was introduced to Nanjing, China from Japan in 1929. Little is known about the genetic diversity and population structure of this species in China. We examined the genetic diversity and population structure of six P. clarkii populations using nine polymorphic microsatellites. Among the six populations, Nanjing population showed the highest allele number, allele richness and gene diversity, which is consistent with records indicating Nanjing may be the first site of introduction. In all six populations, significant heterozygote deficit was observed, suggesting founder effects and non-random mating. Analysis of bottleneck under infinite allele model, stepwise mutation model and two-phased model of mutation revealed evidence of a recent bottleneck in all these populations. Pairwise genetic distance analysis, AMOVA and assignment tests demonstrated high genetic differentiation between populations. Pairwise genetic distance did not fit the pairwise geographic distance, suggesting that human mediated dispersal have played a role in the population expansion and genetic differentiation.  相似文献   

8.

Background

The light brown apple moth (LBAM), Epiphyas postvittana (Walker), is native to Australia but invaded England, New Zealand, and Hawaii more than 100 years ago. In temperate climates, LBAM can be a major agricultural pest. In 2006 LBAM was discovered in California, instigating eradication efforts and quarantine against Hawaiian agriculture, the assumption being that Hawaii was the source of the California infestation. Genetic relationships among populations in Hawaii, California, and New Zealand are crucial to understanding LBAM invasion dynamics across the Pacific.

Methodology/Principal Findings

We sequenced mitochondrial DNA (mtDNA) from 1293 LBAM individuals from California (695), Hawaii (448), New Zealand (147), and Australia (3) to examine haplotype diversity and structure among introduced populations, and evaluate the null hypothesis that invasive populations are from a single panmictic source. However, invasive populations in California and New Zealand harbor deep genetic diversity, whereas Hawaii shows low level, shallow diversity.

Conclusions/Significance

LBAM recently has established itself in California, but was in Hawaii and New Zealand for hundreds of generations, yet California and New Zealand show similar levels of genetic diversity relative to Hawaii. Thus, there is no clear relationship between duration of invasion and genetic structure. Demographic statistics suggest rapid expansion occurring in California and past expansions in New Zealand; multiple introductions of diverse, genetically fragmented lineages could contribute to these patterns. Hawaii and California share no haplotypes, therefore, Hawaii is not the source of the California introduction. Paradoxically, Hawaii and California share multiple haplotypes with New Zealand. New Zealand may be the source for the California and Hawaii infestations, but the introductions were independent, and Hawaii was invaded only once. This has significant implications for quarantine, and suggests that probability of invasion is not directly related to geographic distance. Surprisingly, Hawaiian LBAM populations have much lower genetic diversity than California, despite being older.  相似文献   

9.
Mangrove forests in the Gulf of California, Mexico represent the northernmost populations along the Pacific coast and thus they are likely to be source populations for colonization at higher latitudes as climate becomes more favorable. Today, these populations are relatively small and fragmented and prior research has indicated that they are poor in genetic diversity. Here we set out to investigate whether the low diversity in this region was a result of recent colonization, or fragmentation and genetic drift of once more extensive mangroves due to climatic changes in the recent past. By sampling the two major mangrove species, Rhizophora mangle and Avicennia germinans, along the Pacific and Atlantic coasts of Mexico, we set out to test whether concordant genetic signals could elucidate recent evolution of the ecosystem. Genetic diversity of both mangrove species showed a decreasing trend toward northern latitudes along the Pacific coast. The lowest levels of genetic diversity were found at the range limits around the Gulf of California and the outer Baja California peninsula. Lack of a strong spatial genetic structure in this area and recent northern gene flow in A. germinans suggest recent colonization by this species. On the other hand, lack of a signal of recent northern dispersal in R. mangle, despite the higher dispersal capability of this species, indicates a longer presence of populations, at least in the southern Gulf of California. We suggest that the longer history, together with higher genetic diversity of R. mangle at the range limits, likely provides a gene pool better able to colonize northwards under climate change than A. germinans.  相似文献   

10.
Gelatinous zooplankton outbreaks have increased globally owing to a number of human-mediated factors, including food web alterations and species introductions. The invasive ctenophore Mnemiopsis leidyi entered the Black Sea in the early 1980s. The invasion was followed by the Azov, Caspian, Baltic and North Seas, and, most recently, the Mediterranean Sea. Previous studies identified two distinct invasion pathways of M. leidyi from its native range in the western Atlantic Ocean to Eurasia. However, the source of newly established populations in the Mediterranean Sea remains unclear. Here we build upon our previous study and investigate sequence variation in both mitochondrial (Cytochrome c Oxidase subunit I) and nuclear (Internal Transcribed Spacer) markers in M. leidyi, encompassing five native and 11 introduced populations, including four from the Mediterranean Sea. Extant genetic diversity in Mediterranean populations (n = 8, N a = 10) preclude the occurrence of a severe genetic bottleneck or founder effects in the initial colonizing population. Our mitochondrial and nuclear marker surveys revealed two possible pathways of introduction into Mediterranean Sea. In total, 17 haplotypes and 18 alleles were recovered from all surveyed populations. Haplotype and allelic diversity of Mediterranean populations were comparable to populations from which they were likely drawn. The distribution of genetic diversity and pattern of genetic differentiation suggest initial colonization of the Mediterranean from the Black-Azov Seas (pairwise F ST = 0.001–0.028). However, some haplotypes and alleles from the Mediterranean Sea were not detected from the well-sampled Black Sea, although they were found in Gulf of Mexico populations that were also genetically similar to those in the Mediterranean Sea (pairwise F ST = 0.010–0.032), raising the possibility of multiple invasion sources. Multiple introductions from a combination of Black Sea and native region sources could be facilitated by intense local and transcontinental shipping activity, respectively.  相似文献   

11.
Manila clam Ruditapes philippinarum – synonym Venerupis philippinarum (Adams and Reeve, 1850) – is one of the most successful marine invaders, being introduced worldwide for aquaculture and fisheries. Genetic diversity and structure of its populations are largely unknown, especially in the invaded environments. Herein we present molecular genetic data on 12 introduced Manila clam populations in Italy, Spain, and Portugal from both Mediterranean (Adriatic) and Atlantic sampling sites. The phylogenetic information was investigated by the direct sequencing of 16S mitochondrial DNA. Results of mtDNA analyses showed the occurrence of 11 haplotypes for European introduced populations, as a consequence of multiple founder effects from different source populations. Rp hap1 was the most frequent, shared among all populations. The other 10 haplotypes were rare and distributed at local scale, in agreement with what was observed in other invasive bivalves. Biogeographic and phylogenetic analyses based on 16S rDNA of introduced Manila clam populations showed a complex scenario, dominated by multiple pools of individuals coming from different sources, as a consequence of multiple introductions.  相似文献   

12.
We present the global phylogeography of the black sea urchin Arbacia lixula, an amphi-Atlantic echinoid with potential to strongly impact shallow rocky ecosystems. Sequences of the mitochondrial cytochrome c oxidase gene of 604 specimens from 24 localities were obtained, covering most of the distribution area of the species, including the Mediterranean and both shores of the Atlantic. Genetic diversity measures, phylogeographic patterns, demographic parameters and population differentiation were analysed. We found high haplotype diversity but relatively low nucleotide diversity, with 176 haplotypes grouped within three haplogroups: one is shared between Eastern Atlantic (including Mediterranean) and Brazilian populations, the second is found in Eastern Atlantic and the Mediterranean and the third is exclusively from Brazil. Significant genetic differentiation was found between Brazilian, Eastern Atlantic and Mediterranean regions, but no differentiation was found among Mediterranean sub-basins or among Eastern Atlantic sub-regions. The star-shaped topology of the haplotype network and the unimodal mismatch distributions of Mediterranean and Eastern Atlantic samples suggest that these populations have suffered very recent demographic expansions. These expansions could be dated 94–205 kya in the Mediterranean, and 31–67 kya in the Eastern Atlantic. In contrast, Brazilian populations did not show any signature of population expansion. Our results indicate that all populations of A. lixula constitute a single species. The Brazilian populations probably diverged from an Eastern Atlantic stock. The present-day genetic structure of the species in Eastern Atlantic and the Mediterranean is shaped by very recent demographic processes. Our results support the view (backed by the lack of fossil record) that A. lixula is a recent thermophilous colonizer which spread throughout the Mediterranean during a warm period of the Pleistocene, probably during the last interglacial. Implications for the possible future impact of A. lixula on shallow Mediterranean ecosystems in the context of global warming trends must be considered.  相似文献   

13.
We compared the levels and distribution of genetic diversity in Eurasian and North American populations of Brachypodium sylvaticum (Huds.) Beauv. (false brome), a newly invasive perennial bunchgrass in western North America. Our goals were to identify source regions for invasive populations, determine the number of independent invasion events, and assess the possibility that postinvasion bottlenecks and hybridization have affected patterns of genetic diversity in the invaded range. We tested the hypothesis that this Eurasian grass was accidentally introduced into two areas in Oregon and one site in California by examining nuclear microsatellites and chloroplast haplotype variation in 23 introduced and 25 native populations. In the invaded range, there was significantly lower allelic richness (R(S)), observed heterozygosity (H(O)) and within-population gene diversity (H(S)), although a formal test failed to detect a significant genetic bottleneck. Most of the genetic variation existed among populations in the native range but within populations in the invaded range. All of the allelic variation in the invaded range could be explained based on alleles found in western European populations. The distribution of identified genetic clusters in the North American populations and the unique alleles associated with them is consistent with two historical introductions in Oregon and a separate introduction to California. Further analyses of population structure indicate that intraspecific hybridization among genotypes from geographically distinct regions of western Europe occurred following colonization in Oregon. The California populations, however, are more likely to be derived from one or perhaps several genetically similar regions in the native range. The emergence and spread of novel recombinant genotypes may be facilitating the rapid spread of this invasive species in Oregon.  相似文献   

14.
The maintenance of genetic diversity is thought to be fundamental for the conservation of threatened species. It is therefore important to understand how genetic diversity is affected by the re-introduction of threatened species. We use establishment history and genetic data from the remnant and re-introduced populations of a New Zealand endemic bird, the hihi Notiomystis cincta, to understand genetic diversity loss and quantify the genetic effects of re-introduction. Our data do not support any recent bottleneck events in the remnant population. Furthermore, all genetic diversity measures indicate the remnant hihi population has retained high levels of genetic diversity relative to other New Zealand avifauna with similar histories of decline. Genetic diversity (N(A) , alleles per locus, allelic richness, F(IS) and H(S) ) did not significantly decrease in new hihi populations founded through re-introduction when compared to their source populations, except in the Kapiti Island population (allelic richness and H(S) ) which had very slow post-re-introduction population growth. The N(e) /N(c) ratio in the remnant population was high, but decreased in first-level re-introductions, which together with significant genetic differentiation between populations (F(ST) & Fisher's exact tests) suggest that extant populations are diverging as a result of founder effects and drift. Importantly, simulations of future allele loss predict that the number of alleles lost will be higher in populations with a slow population growth, fewer founding individuals and with nonrandom mating. Interestingly, this species has very high levels of extra-pair paternity which may reduce reproductive variance by allowing social and floater males to reproduce a life history trait that together with a large remnant population size may help maintain higher levels of genetic diversity than expected.  相似文献   

15.
The Aedes aegypti mosquito first invaded the Americas about 500 years ago and today is a widely distributed invasive species and the primary vector for viruses causing dengue, chikungunya, Zika, and yellow fever. Here, we test the hypothesis that the North American colonization by Ae. aegypti occurred via a series of founder events. We present findings on genetic diversity, structure, and demographic history using data from 70 Ae. aegypti populations in North America that were genotyped at 12 microsatellite loci and/or ~20,000 single nucleotide polymorphisms, the largest genetic study of the region to date. We find evidence consistent with colonization driven by serial founder effect (SFE), with Florida as the putative source for a series of westward invasions. This scenario was supported by (1) a decrease in the genetic diversity of Ae. aegypti populations moving west, (2) a correlation between pairwise genetic and geographic distances, and (3) demographic analysis based on allele frequencies. A few Ae. aegypti populations on the west coast do not follow the general trend, likely due to a recent and distinct invasion history. We argue that SFE provides a helpful albeit simplified model for the movement of Ae. aegypti across North America, with outlier populations warranting further investigation.  相似文献   

16.
Carcharhinus limbatus has a cosmopolitan distribution and marked genetic structuring, mainly because of its philopatric behavior. However, analysis of this structuring has not previously included South American populations. In the present study, we analyzed a sample of adult individuals collected on the northern coast of Brazil and compared the sequences of the mitochondrial control region with those of populations already genotyped. Relatively high haplotype diversity (12 haplotypes, genetic diversity of 0.796) was observed, similar to that in other populations but with a much larger number of private alleles. In contrast to populations studied previously, which were represented by neonates, the pronounced allelic variability found in the South American individuals may have resulted from migrations from other populations in the region that have yet to be genotyped. This population was also genetically distinct from the other Atlantic populations (Fst > 0.8), probably because of female philopatry, and apparently separated from the northwestern Atlantic group 1.39 million years ago. These findings indicate that the C. limbatus population from northern Brazil is genetically distinct from all other populations and should be considered as a different management unit for the protection of stocks.  相似文献   

17.
The peracarid isopod, Stenosoma nadejda (Rezig 1989), until recently considered to be endemic of the Mediterranean region, was first reported in the Atlantic coast of southern Spain in 2001, and in 2006 abundant populations were discovered throughout the southwestern Portuguese coast. This fast expansion was intriguing because, as a direct brooder, this species has limited mechanisms for dispersal, such as rafting on seaweeds. Did S. nadejda recently extend its range into the Atlantic or was it overlooked in the past? We examined the patterns of genetic diversity and population differentiation accordingly by sequencing the cytochrome c oxidase subunit I mitochondrial gene from 75 individuals collected in five locations in Atlantic Iberia and one in the Mediterranean. Our results indicate that the newly discovered Atlantic populations of S. nadejda appear to be old and have long persisted on Atlantic shores rather than being a recent introduction. High levels of genetic diversity and geographic structure were uncovered in what was initially suspected to be an ‘invasive’ species. Recent changes in population dynamics may have made S. nadejda more conspicuous in the Atlantic shores, or a more comprehensive survey led to the recognition of this species where it was not expected.  相似文献   

18.
The Asian longhorned beetle, (Coleoptera, Cerambycidae, Anoplophora glabripennis (Motschulsky)), is endemic to China and Korea and an important invasive insect in North America and Europe. We analyzed mitochondrial DNA sequence data of invasive populations of A. glabripennis in North America and Europe, and microsatellite allele frequency data of beetles from North America. We show that populations in New York City and Long Island NY; New Jersey, Chicago, IL, and Toronto, Canada have limited genetic diversity compared to populations in China. In addition, the data suggest that separate introduction events were responsible for many of the populations in North America and for European populations in Austria, France, Germany and Italy. Populations on Long Island, NY are suspected to have been initiated by the transport of cut wood from New York City. A. glabripennis beetles found in Jersey City, NJ appear to be derived from an expansion of the New York City, NY population, whereas beetles found in Linden, NJ are an expansion from the Carteret, NJ population. Limited genetic diversity did not stop this invasive insect from establishing damaging populations in North America. Founders of introduced A. glabripennis populations in North America and Europe are likely derived from populations in China that are themselves invasive, rendering difficult the identification of source populations. Invasiveness in an insect’s natural range could be an important predictor of potential pest status of introduced populations.  相似文献   

19.
The impact of founder events on levels of genetic variation in natural populations remains a topic of significant interest. Well-documented introductions provide a valuable opportunity to examine how founder events influence genetic diversity in invasive species. House finches (Carpodacus mexicanus) are passerine birds native to western North America, with the large eastern North American population derived from a small number of captive individuals released in the 1940s. Previous comparisons using amplified fragment length polymorphism (AFLP) markers found equivalent levels of diversity in eastern and western populations, suggesting that any genetic effects of the founder event were ameliorated by the rapid growth of the newly established population. We used an alternative marker system, 10 highly polymorphic microsatellites, to compare levels of genetic diversity between four native and five introduced house finch populations. In contrast to the AFLP comparisons, we found significantly lower allelic richness and heterozygosity in introduced populations across all loci. Three out of five introduced populations showed significant reductions in the ratio of the number of alleles to the allele size range, a within-population characteristic of recent bottlenecks. Finally, native and introduced populations showed significant pairwise differences in allele frequencies in every case, with stronger isolation by distance within the introduced than native range. Overall, our results provide compelling molecular evidence for a founder effect during the introduction of eastern house finches that reduced diversity levels at polymorphic microsatellite loci and may have contributed to the emergence of the Mycoplasma epidemic which recently swept the eastern range of this species.  相似文献   

20.
Biological invasions represent an important component of global change, with potentially huge detrimental effects on native biological biodiversity and ecosystems. Knowledge about invasion history provides information about the invasion process and the origin and genetic composition of invading populations. To clarify the source and invasive routes of a successful world-wide invader, the veined rapa whelk, Rapana venosa, genetic variability of samples from five representative native populations from coasts of Japan and China and 13 worldwide invasive populations was analyzed using 11 nuclear microsatellite loci. A dramatic decrease of genetic variation was detected in the invasive populations compared with the native populations. The results demonstrated that R. venosa was capable of establishing itself in many areas despite a dramatic genetic bottleneck, suggesting that a remarkable reduction of genetic diversity is not a limiting factor for short-term success of this invasive species. Considering the lack of mitochondrial variation previously observed in the invasive populations, the dramatic genetic bottleneck and the allele distribution detected using microsatellites suggested that the original introduced Black Sea population could have been founded by very few individuals, perhaps only a single female and a single male. The initial invasive Black Sea population was likely an accidental introduction from Japan, and then invaded the Adriatic Sea by range expansion, which served as a source for subsequent invasive populations in Europe and America by various transport vectors. In addition, microsatellite alleles in the invasive populations showed a tendency to mutate with the addition or deletion of a single repeat, which is consistent with the stepwise mutation model. Our findings provide a good example of how an aquatic invader with a drastic genetic bottleneck and very low genetic diversity rapidly expands its geographical range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号