首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
Proliferative or synthetic vascular smooth muscle cells (VSMCs) are widely accepted to be mainly derived from the dedifferentiation or phenotypic modulation of mature contractile VSMCs, i.e., a phenotype switch from a normally quiescent and contractile type into a proliferative or synthetic form. However, this theory has been challenged by recent evidence that synthetic VSMCs predominantly originate instead from media-derived multipotent vascular stem cells (MVSCs). To test these hypotheses further, we re-examine whether the conventional rat aortic SMC (RASMC) culture involves the VSMC differentiation of MVSCs or the dedifferentiation of mature VSMCs and the potential mechanism for controlling the synthetic phenotype of RASMCs. We enzymatically isolated RASMCs and cultured the cells in both a regular growth medium (RGM) and a stem cell growth medium (SCGM). Regardless of culture conditions, only a small portion of freshly isolated RASMCs attaches, survives and grows slowly during the first 7 days of primary culture, while expressing both SMC- and MVSC-specific markers. RGM-cultured cells undergo a process of synthetic SMC differentiation, whereas SCGM-cultured cells can be differentiated into not only synthetic SMCs but also other somatic cells. Notably, compared with the RGM-cultured differentiated RASMCs, the SCGM-cultured undifferentiated cells exhibit the phenotype of MVSCs and generate greater amounts of reactive oxygen species (ROS) that act as a negative regulator of differentiation into synthetic VSMCs. Knockdown of phospholipase A2, group 7 (Pla2g7) suppresses ROS formation in the MVSCs while enhancing SMC differentiation of MVSCs. These results suggest that cultured synthetic VSMCs can be derived from the SMC differentiation of MVSCs with ROS as a negative regulator.  相似文献   

3.
Phenotypic modulation of smooth muscle cells (SMC) involves dramatic changes in expression and organization of contractile and cytoskeletal proteins, but little is known of how this process is regulated. The present study used a cell culture model to investigate the possible involvement of RhoA, a known regulator of the actin cytoskeleton. In rabbit aortic SMC seeded into primary culture at moderate density, Rho activation was high at two functionally distinct time-points, first as cells modulated to the "synthetic" phenotype, and again upon confluence and return to the "contractile" phenotype. Rho expression increased with time, such that maximal expression occurred upon return to the contractile state. Transient transfection of synthetic state cells with constitutively active RhoA (Val14RhoA) caused a reduction in cell size and reorganization of cytoskeletal proteins to resemble that of the contractile phenotype. Actin and myosin filaments were tightly packed and highly organised while vimentin localised to the perinuclear region; focal adhesions were enlarged and concentrated at the cell periphery. Conversely, inhibition of endogenous Rho by C3 exoenzyme resulted in complete loss of contractile filaments without affecting vimentin distribution; focal adhesions were reduced in size and number. Treatment of synthetic state SMC with known regulators of SMC phenotype, heparin and thrombin, caused a modest increase in Rho activation. Long-term confluence and serum deprivation induced cells to return to a more contractile phenotype and this was augmented by heparin and thrombin. The results implicate RhoA for a role in regulating SMC phenotype and further show that activation of Rho by heparin and thrombin correlates with the ability of these factors to promote the contractile phenotype.  相似文献   

4.
5.
Smooth muscle cells (SMC) exhibit a functional plasticity, modulating from the mature phenotype in which the primary function is contraction, to a less differentiated state with increased capacities for motility, protein synthesis, and proliferation. The present study determined, using Western analysis, double-label immunofluorescence and confocal microscopy, whether changes in phenotypic expression of rabbit aortic SMC in culture could be correlated with alterations in expression and distribution of structural proteins. "Contractile" state SMC (days 1 and 3 of primary culture) showed distinct sorting of proteins into subcellular domains, consistent with the theory that the SMC structural machinery is compartmentalised within the cell. Proteins specialised for contraction (alpha-SM actin, SM-MHC, and calponin) were highly expressed in these cells and concentrated in the upper central region of the cell. Vimentin was confined to the body of the cell, providing support for the contractile apparatus but not co-localising with it. In line with its role in cell attachment and motility, beta-NM actin was localised to the cell periphery and basal cortex. The dense body protein alpha-actinin was concentrated at the cell periphery, possibly stabilising both contractile and motile apparatus. Vinculin-containing focal adhesions were well developed, indicating the cells' strong adhesion to substrate. In "synthetic" state SMC (passages 2-3 of culture), there was decreased expression of contractile and adhesion (vinculin) proteins with a concomitant increase in cytoskeletal proteins (beta-non-muscle [NM] actin and vimentin). These quantitative changes in structural proteins were associated with dramatic changes in their distribution. The distinct compartmentalisation of structural proteins observed in "contractile" state SMC was no longer obvious, with proteins more evenly distributed throughout the cytoplasm to accommodate altered cell function. Thus, SMC phenotypic modulation involves not only quantitative changes in contractile and cytoskeletal proteins, but also reorganisation of these proteins. Since the cytoskeleton acts as a spatial regulator of intracellular signalling, reorganisation of the cytoskeleton may lead to realignment of signalling molecules, which, in turn, may mediate the changes in function associated with SMC phenotypic modulation.  相似文献   

6.
Quantitative immunoblotting techniques were used to study the effects of seeding density on the expression of caldesmon and vinculin variants, which are sensitive markers of vascular smooth muscle cell (SMC) phenotypic modulation in culture. Rabbit aortic SMC were seeded at different densities: 13 x 10(4) cells/cm2 (high density), 3 x 10(4) cells/cm2 (medium density), and 0.2 x 10(4) cells/cm2 (low density) and cultured in the presence of 5% fetal calf serum. Irrespective of cell density and growth phase, caldesmon150 was gradually and irreversibly substituted by caldesmon77, but at high seeding density this substitution proceeded at a slower rate. The fraction of meta-vinculin (smooth muscle variant of vinculin) was reduced after seeding SMC in culture, but was reestablished when the cells reached confluency. Thus, high SMC seeding density is essential but not sufficient to keep vascular SMC cultured in the presence of serum in the contractile phenotype.  相似文献   

7.
Smooth muscle cell proliferation after arterial injury is regulated by growth factors and components of the extracellular matrix. We have previously demonstrated that fibronectin promotes a phenotypic modulation of freshly isolated rat smooth muscle cells from a contractile to a synthetic phenotype in primary culture and supports the ability of the cells to respond to growth factors. Here, we analyzed if fibronectin promotes cell cycle entry in freshly isolated rat aortic smooth muscle cells during primary culture. Cell cycle analysis showed that cells seeded on fibronectin remained in the G(0)/G(1) phase of the cell cycle during the first 6 days of culture. During this period, there was an increased expression of cyclin D1 and p27(KIP1) in the absence of exogenous growth factors. Addition of serum was followed by enhanced cyclin D1 expression, decreased p27(KIP1) levels, hyperphosphorylation of Rb protein, induction of cyclin A and cyclin D3 expression, and cell cycle progression into S phase. The results indicate that fibronectin initiates cell cycle entry in freshly isolated smooth muscle cells by promoting the induction of cyclin D1 and thereby facilitates further cell cycle progression together with growth factors.  相似文献   

8.
Smooth Muscle Cells (SMC) are unique amongst all muscle cells in their capacity to modulate their phenotype. Indeed, SMCs do not terminally differentiate but instead harbour a remarkable capacity to dedifferentiate, switching between a quiescent contractile state and a highly proliferative and migratory phenotype, a quality often associated to SMC dysfunction. However, phenotypic plasticity remains poorly examined in the field of gastroenterology in particular in pathologies in which gut motor activity is impaired. Here, we assessed SMC status in biopsies of infants with chronic intestinal pseudo-obstruction (CIPO) syndrome, a life-threatening intestinal motility disorder. We showed that CIPO-SMCs harbour a decreased level of contractile markers. This phenotype is accompanied by an increase in Platelet-Derived Growth Factor Receptor-alpha (PDGFRA) expression. We showed that this modulation occurs without origin-related differences in CIPO circular and longitudinal-derived SMCs. As we characterized PDGFRA as a marker of digestive mesenchymal progenitors during embryogenesis, our results suggest a phenotypic switch of the CIPO-SMC towards an undifferentiated stage. The development of CIPO-SMC culture and the characterization of SMC phenotypic switch should enable us to design therapeutic approaches to promote SMC differentiation in CIPO.  相似文献   

9.
10.
To investigate changes in the three-dimensional microfilament architecture of vascular smooth muscle cells (SMC) during the process of phenotypic modulation, rabbit aortic SMCs cultured under different conditions and at different time points were either labelled with fluorescein-conjugated probes to cytoskeletal and contractile proteins for observation by confocal laser scanning microscopy, or extracted with Triton X-100 for scanning electron microscopy. Densely seeded SMCs in primary culture, which maintain a contractile phenotype, display prominent linear myofilament bundles (stress fibres) that are present throughout the cytoplasm with alpha-actin filaments predominant in the central part and beta-actin filaments in the periphery of the cell. Intermediate filaments form a meshed network interconnecting the stress fibres and linking directly to the nucleus. Moderately and sparsely seeded SMCs, which modulate toward the synthetic phenotype during the first 5 days of culture, undergo a gradual redistribution of intermediate filaments from the perinuclear region toward the peripheral cytoplasm and a partial disassembly of stress fibres in the central part of the upper cortex of the cytoplasm, with an obvious decrease in alpha-actin and myosin staining. These changes are reversed in moderately seeded SMCs by day 8 of culture when they have reached confluence. The results reveal two changes in microfilament architecture in SMCs as they undergo a change in phenotype: the redistribution of intermediate filaments probably due to an increase in synthetic organelles in the perinuclear area, and the partial disassembly of stress fibres which may reflect a degradation of contractile components.  相似文献   

11.
Chronic hypoxia triggers pulmonary vascular remodeling, which is associated with a modulation of the vascular smooth muscle cell (SMC) phenotype from a contractile, differentiated to a synthetic, dedifferentiated state. We previously reported that acute hypoxia represses cGMP-dependent protein kinase (PKG) expression in ovine fetal pulmonary venous SMCs (FPVSMCs). Therefore, we tested if altered expression of PKG could explain SMC phenotype modulation after exposure to hypoxia. Hypoxia-induced reduction in PKG protein expression strongly correlated with the repressed expression of SMC phenotype markers, myosin heavy chain (MHC), calponin, vimentin, alpha-smooth muscle actin (alphaSMA), and thrombospondin (TSP), indicating that hypoxic exposure of SMC induced phenotype modulation to dedifferentiated state, and PKG may be involved in SMC phenotype modulation. PKG-specific small interfering RNA (siRNA) transfection in FPVSMCs significantly attenuated calponin, vimentin, and MHC expression, with no effect on alphaSMA and TSP. Treatment with 30 microM Drosophila Antennapedia (DT-3), a membrane-permeable peptide inhibitor of PKG, attenuated the expression of TSP, MHC, alphaSMA, vimentin, and calponin. The results from PKG siRNA and DT-3 studies indicate that hypoxia-induced reduction in protein expression was also similarly impacted by PKG inhibition. Overexpression of PKG in FPVSMCs by transfection with a full-length PKG construct tagged with green fluorescent fusion protein (PKG-GFP) reversed the effect of hypoxia on the expression of SMC phenotype marker proteins. These results suggest that PKG could be one of the determinants for the expression of SMC phenotype marker proteins and may be involved in the maintenance of the differentiated phenotype in pulmonary vascular SMCs in hypoxia.  相似文献   

12.
Intestinal inflammation causes an increased intestinal wall thickness, in part, due to the proliferation of smooth muscle cells, which impairs the contractile phenotype elsewhere. To study this, cells from the circular muscle layer of the rat colon (CSMC) were isolated and studied, both in primary culture and after extended passage, using quantitative PCR, Western blot analysis, and immunocytochemistry. By 4 days in vitro, both mRNA and protein for the smooth muscle marker proteins α-smooth muscle actin, desmin, and SM22-α were reduced by >50%, and mRNA for cyclin D1 was increased threefold, evidence for modulation to a proliferative phenotype. Continued growth caused significant further decrease in expression, evidence that phenotypic loss in CSMC was proportional to the extent of proliferation. In CSMC isolated at day 2 of trinitrobenzene sulfonic acid-induced colitis, flow cytometry and Western blotting showed that these differentiated markers were reduced in mitotic CSMC, while similar to control in nonmitotic CSMC. By day 35 post-trinitrobenzene sulfonic acid, when inflammation has resolved, CSMC were hypertrophic, but, nonetheless, showed markedly decreased expression of smooth muscle protein markers per cell. In vitro, day 35 CSMC displayed an accelerated loss of phenotype and increased thymidine uptake in response to serum or PDGF-BB. Furthermore, carbachol-induced expression of phospho-AKT (a marker of cholinergic response) was lost from day 35 CSMC in vitro, while retained in control cells. Therefore, proliferation reduces the expression of smooth-muscle-specific markers in CSMC, possibly leading to altered contractility. However, inflammation-induced proliferation in vivo also causes lasting changes that include unexpected priming for an exaggerated response to proliferative stimuli. Identification of the molecular mechanisms of intestinal smooth muscle cell phenotypic modulation will be helpful in reducing the detrimental effects of inflammation.  相似文献   

13.
The shape of smooth muscle cells (SMC) was analysed using the phase contrast microscopy of cell suspensions obtained by alcohol-alkali dissociation, as well as the semithin sections prepared in perpendicular planes. The phenotype of SMC was analysed using transmission electron microscopy. The shape of SMC changes from preferentially round to preferentially spindle-like and stellate one during development. The differentiation of SMC is accompanied with the increase in the contractile apparatus content and in the decrease in the content of synthetic organelles.  相似文献   

14.
 Transition from a contractile to a synthetic phenotype appears to be an early key event during the development of intimal thickening after arterial wall injury. We examined the expression of osteopontin mRNA, proliferation, and phenotypic properties of smooth muscle cells (SMCs) in rabbit neointima after balloon denudation and in primary culture. A strong osteopontin mRNA signal was detected in the thickened intima 1 week after balloon denudation and in the surface layer of the intima 2 weeks after balloon denudation. Ki-67 immunohistochemistry showed that osteopontin mRNA expression increased when SMCs entered the proliferating phase in the intima. Rabbit arterial SMCs on type I collagen after 1 day of primary culture with growth factors, as well as freshly isolated cells, were in the G0 phase (contractile phenotype) and did not express osteopontin mRNA. After 3 days of culture, most cells entered the G1B phase (synthetic phenotype) and expressed osteopontin mRNA. In the absence of growth factors, most cells transferred to the G1A phase (intermediate phenotype) after 3 and 7 days, but did not express osteopontin mRNA. Our findings indicate that the osteopontin gene provides a marker that can be used to distinguish the phenotypic properties of vascular SMCs. Accepted: 22 November 1996  相似文献   

15.
Conventional protocols for differentiating human induced-pluripotent stem cells (hiPSCs) into smooth-muscle cells (SMCs) can be inefficient and generally fail to yield cells with a specific SMC phenotype (i.e., contractile or synthetic SMCs). Here, we present two novel hiPSC-SMC differentiation protocols that yield SMCs with predominantly contractile or synthetic phenotypes. Flow cytometry analyses of smooth-muscle actin (SMA) expression indicated that ~45% of the cells obtained with each protocol assumed an SMC phenotype, and that the populations could be purified to ~95% via metabolic selection. Assessments of cellular mRNA and/or protein levels indicated that SMA, myosin heavy chain II, collagen 1, calponin, transgelin, connexin 43, and vimentin expression in the SMCs obtained via the Contractile SMC protocol and in SMCs differentiated via a traditional protocol were similar, while SMCs produced via the Sythetic SMC protocol expressed less calponin, more collagen 1, and more connexin 43. Differences were also observed in functional assessments of the two SMC populations: the two-dimensional surface area of Contractile SMCs declined more extensively (to 12% versus 44% of original size) in response to carbachol treatment, while quantification of cell migration and proliferation were greater in Synthetic SMCs. Collectively, these data demonstrate that our novel differentiation protocols can efficiently generate SMCs from hiPSCs.  相似文献   

16.
Mesenchymal stem cells (MSCs) have the potential to differentiate into distinct mesenchymal tissue cells. They are easy to expand while maintaining their undifferentiated state, which suggests that these cells could be an attractive cell source for tissue engineering of cartilage. In vitro high density micromass culture has been widely used for chondrogenesis induction. Our objective was to investigate human MSCs cell cycle, viability and differentiation in these conditions. Therefore, to induce human MSCs chondrogenesis, micromasses were cultured in the presence of transforming growth factor-beta1 in serum free medium for 21 days. Cell cycle, cell viability and cell phenotype were analyzed by flow cytometry. From day 0 to 7, the G0/G1 phase increased, whereas the S phase decreased gradually, but cell cycle phases (S, G0/G1 and G2/M) did not significantly change after day 7. Less than 10% of cells were apoptotic, but no necrosis was observed, even at day 21. We observed a decrease in CD90 and CD105 expression, from day 0 to 21. In conclusion, our results demonstrate a good viability of human MSCs in micromass culture during the whole period of culture. Moreover, micromass culture allowed human MSCs to be synchronized at the G0/G1 phase, while their phenotype suggested some degree of differentiation.  相似文献   

17.
18.
Smooth muscle cells (SMC) are the major cellular component of the blood vessel wall and are continuously exposed to cyclic stretch due to pulsatile blood flow. This study examined the effects of a physiologically relevant level of cyclic stretch on rat aortic vascular SMC proliferation. Treatment of static SMC with serum, platelet-derived growth factor, or thrombin stimulated SMC proliferation, whereas exposure of SMC to cyclic stretch blocked the proliferative effect of these growth factors. The stretch-mediated inhibition in SMC growth was not due to cell detachment or increased cell death. Flow cytometry analysis revealed that cyclic stretch increased the fraction of SMC in the G(0)/G(1) phase of the cell cycle. Stretch-inhibited G(1)/S phase transition was associated with a decrease in retinoblastoma protein phosphorylation and with a selective increase in the cyclin-dependent kinase inhibitor p21, but not p27. These results demonstrate that cyclic stretch inhibits SMC growth by blocking cell cycle progression and suggest that physiological levels of cyclic stretch contribute to vascular homeostasis by inhibiting the proliferative pathway of SMC.  相似文献   

19.
Aortic root aneurysm formation is a cardinal feature of Marfan syndrome (MFS) and likely TGF‐β driven via Smad (canonical) and ERK (non‐canonical) signalling. The current study assesses human MFS vascular smooth muscle cell (SMC) phenotype, focusing on individual contributions by Smad and ERK, with Notch3 signalling identified as a novel compensatory mechanism against TGF‐β‐driven pathology. Although significant ERK activation and mixed contractile gene expression patterns were observed by traditional analysis, this did not directly correlate with the anatomic site of the aneurysm. Smooth muscle cell phenotypic changes were TGF‐β‐dependent and opposed by ERK in vitro, implicating the canonical Smad pathway. Bulk SMC RNA sequencing after ERK inhibition showed that ERK modulates cell proliferation, apoptosis, inflammation, and Notch signalling via Notch3 in MFS. Reversing Notch3 overexpression with siRNA demonstrated that Notch3 promotes several protective remodelling pathways, including increased SMC proliferation, decreased apoptosis and reduced matrix metalloproteinase activity, in vitro. In conclusion, in human MFS aortic SMCs: (a) ERK activation is enhanced but not specific to the site of aneurysm formation; (b) ERK opposes TGF‐β‐dependent negative effects on SMC phenotype; (c) multiple distinct SMC subtypes contribute to a ‘mixed’ contractile‐synthetic phenotype in MFS aortic aneurysm; and (d) ERK drives Notch3 overexpression, a potential pathway for tissue remodelling in response to aneurysm formation.  相似文献   

20.
The smooth muscle cell is the predominant cell type of the arterial media. In the adult vascular system, smooth muscle cells are found primarily in the contractile phenotype, but following injury or during atherosclerotic plaque formation the secretory synthetic phenotype is expressed. Recently it has been shown that gap junction connexin43 messenger RNA levels are six times higher in cultured smooth muscle cells in the synthetic phenotype than in intact aorta. We have modulated rabbit aortic smooth muscle cells in culture between the synthetic phenotype and one resembling the contractile phenotype, and correlated gap junction expression with phenotype. A dual labelling technique with antibodies against smooth muscle myosin and a synthetic peptide constructed to match a portion of the connexin43 gap junction protein was used for these experiments. Gap junctions are numerous between synthetic phenotype cells but few are observed between contractile cells. Rat aortic smooth muscle cells were also cultured and the growth and structure of gap junctions followed in the synthetic phenotype by use of freeze-fracture electron microscopy and immunohistochemical techniques. Junctional plaques are similar in structure to those observed in cardiac muscle, their size and number increasing with time in culture. The increased numbers of gap junctions between synthetic phenotype smooth muscle cells may be important during vessel development, following injury, or in atherosclerotic plaque formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号