首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present the draft genome for the Rickettsia endosymbiont of Ixodes scapularis (REIS), a symbiont of the deer tick vector of Lyme disease in North America. Among Rickettsia species (Alphaproteobacteria: Rickettsiales), REIS has the largest genome sequenced to date (>2 Mb) and contains 2,309 genes across the chromosome and four plasmids (pREIS1 to pREIS4). The most remarkable finding within the REIS genome is the extraordinary proliferation of mobile genetic elements (MGEs), which contributes to a limited synteny with other Rickettsia genomes. In particular, an integrative conjugative element named RAGE (for Rickettsiales amplified genetic element), previously identified in scrub typhus rickettsiae (Orientia tsutsugamushi) genomes, is present on both the REIS chromosome and plasmids. Unlike the pseudogene-laden RAGEs of O. tsutsugamushi, REIS encodes nine conserved RAGEs that include F-like type IV secretion systems similar to that of the tra genes encoded in the Rickettsia bellii and R. massiliae genomes. An unparalleled abundance of encoded transposases (>650) relative to genome size, together with the RAGEs and other MGEs, comprise ~35% of the total genome, making REIS one of the most plastic and repetitive bacterial genomes sequenced to date. We present evidence that conserved rickettsial genes associated with an intracellular lifestyle were acquired via MGEs, especially the RAGE, through a continuum of genomic invasions. Robust phylogeny estimation suggests REIS is ancestral to the virulent spotted fever group of rickettsiae. As REIS is not known to invade vertebrate cells and has no known pathogenic effects on I. scapularis, its genome sequence provides insight on the origin of mechanisms of rickettsial pathogenicity.  相似文献   

2.
3.
肺炎克雷伯菌是目前临床上最主要的耐药致病菌之一,对人类健康造成了很大威胁.近年来,细菌耐药成为治疗肺炎克雷伯菌感染的主要难题,尤其是高毒力、高耐药性肺炎克雷伯菌的出现对临床工作造成了巨大挑战,而研究表明其耐药基因和毒力基因主要由可移动遗传元件携带而传播.因此,为了更好地认识及防控肺炎克雷伯菌感染,本文对肺炎克雷伯菌基因...  相似文献   

4.
The genome of Desulfovibrio vulgaris strain DePue, a sulfate-reducing Deltaproteobacterium isolated from heavy metal-impacted lake sediment, was completely sequenced and compared with the type strain D. vulgaris Hildenborough. The two genomes share a high degree of relatedness and synteny, but harbour distinct prophage and signatures of past phage encounters. In addition to a highly variable phage contribution, the genome of strain DePue contains a cluster of open-reading frames not found in strain Hildenborough coding for the production and export of a capsule exopolysaccharide, possibly of relevance to heavy metal resistance. Comparative whole-genome microarray analysis on four additional D. vulgaris strains established greater interstrain variation within regions associated with phage insertion and exopolysaccharide biosynthesis.  相似文献   

5.
Bacteria belonging to the genus Wolbachia are obligatory microendocytobionts that infect a variety of arthropods and a majority of filarial nematode species, where they induce reproductive alterations or establish a mutualistic symbiosis. Although two whole genome sequences of Wolbachia pipientis, for strain wMel from Drosophila melanogaster and strain wBm from Brugia malayi, have been fully completed and six other genome sequencing projects are ongoing (http://www.genomesonline.org/index.cgi?want=Prokaryotic+Ongoin), genetic analyses of these bacteria are still scarce, mainly due to the inability to cultivate them outside of eukaryotic cells. Usually, a large amount of host tissue (a thousand individuals, or about 10 g) is required in order to purify Wolbachia and extract its DNA, which is often recovered in small amounts and contaminated by host cell DNA, thus hindering genomic studies. In this report, we describe an efficient and reliable procedure to representatively amplify the Wolbachia genome by multiple-displacement amplification from limited infected host tissue (0.2 g or 2 x 10(7) cells). We obtained sufficient amounts (8 to 10 microg) of DNA of suitable quality for genomic studies, and we demonstrated that the amplified DNA contained all of the Wolbachia loci targeted. In addition, our data indicated that the genome of strain wRi, an obligatory endosymbiont of Drosophila simulans, shares a similar overall architecture with its relative strain wMel.  相似文献   

6.
In this video, Jason Rasgon discusses population replacement strategies to control vector-borne diseases such as malaria and dengue. "Population replacement" is the replacement of wild vector populations (that are competent to transmit pathogens) with those that are not competent to transmit pathogens. There are several theoretical strategies to accomplish this. One is to exploit the maternally-inherited symbiotic bacteria Wolbachia pipientis. Wolbachia is a widespread reproductive parasite that spreads in a selfish manner at the extent of its host's fitness. Jason Rasgon discusses, in detail, the basic biology of this bacterial symbiont and various ways to use it for control of vector-borne diseases.  相似文献   

7.
8.
The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the α-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel–D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections.  相似文献   

9.
The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the α-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel–D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections.  相似文献   

10.
As is the case with mammals in general, primate genomes are inundated with repetitive sequence. Although much of this repetitive content consists of "molecular fossils" inherited from early mammalian ancestors, a significant portion of this material comprises active mobile element lineages. Despite indications that these elements played a major role in shaping the architecture of the genome, there remain many unanswered questions surrounding the nature of the host-element relationship. Here we review advances in our understanding of the host-mobile element dynamic and its overall impact on primate evolution.  相似文献   

11.
In the ciliated protozoan Tetrahymena thermophila, extensive DNA elimination is associated with differentiation of the somatic macronucleus from the germline micronucleus. This study describes the isolation and complete characterization of Tlr elements, a family of approximately 30 micronuclear DNA sequences that are efficiently eliminated from the developing macronucleus. The data indicate that Tlr elements are comprised of an ~22 kb internal region flanked by complex and variable termini. The Tlr internal region is highly conserved among family members and contains 15 open reading frames, some of which resemble genes encoded by transposons and viruses. The Tlr termini appear to be long inverted repeats consisting of (i) a variable region containing multiple direct repeats which differ in number and sequence from element to element and (ii) a conserved terminal 47 bp sequence. Taken together, these results suggest that Tlr elements comprise a novel family of mobile genetic elements that are confined to the Tetrahymena germline genome. Possible mechanisms of developmentally programmed Tlr elimination are discussed.  相似文献   

12.
Draft genome sequences for Schistosoma mansoni and Schistosoma japonicum are now available. However, the identity and importance of most schistosome genes have yet to be determined. Recently, progress has been made towards the genetic manipulation and transgenesis of schistosomes. Both loss-of-function and gain-of-function approaches appear to be feasible in schistosomes based on findings described in the past 5 years. This review focuses on reports of schistosome transgenesis, specifically those dealing with the transformation of schistosomes with exogenous mobile genetic elements and/or their endogenous relatives for the genetic manipulation of schistosomes. Transgenesis mediated by mobile genetic elements offers a potentially tractable route to introduce foreign genes to schistosomes, a means to determine the importance of schistosome genes, including those that could be targeted in novel interventions and the potential to undertake large-scale forward genetics by insertional mutagenesis.  相似文献   

13.
S Masui  S Kamoda  T Sasaki  H Ishikawa 《Plasmid》1999,42(1):13-19
Wolbachia are maternally inherited intracellular rickettsia-like bacteria known to infect a wide range of arthropods. They are associated with a number of different reproductive phenotypes in their hosts, such as cytoplasmic incompatibility, parthenogenesis, and feminization. We report on a novel insertion sequence (IS), ISW1, which was identified in the region downstream of groEL of a Wolbachia strain, wTai. The 573-bp-long ISW1 sequence is the first IS element observed in this organism, displays significant similarity to IS200, and lacks terminal inverted repeats. There were more than 20 copies of ISW1 on the chromosome of wTai. Sequence analysis of nine distinct ISW1 copies and their flanking regions showed that the copies were identical and suggested that ISW1 has no preference for its insertion sites. Possible roles of ISW1 in the adaptation of Wolbachia to intracellular environments and in various reproductive alterations caused by this bacterium are discussed.  相似文献   

14.
The maternally inherited intracellular symbiont Wolbachia pipientis is well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts it infects. It has been implicated in causing cytoplasmic incompatibility, parthenogenesis, and the feminization of genetic males in different hosts. The molecular mechanisms by which this fastidious intracellular bacterium causes these reproductive and developmental abnormalities have not yet been determined. In this paper, we report on (i) the purification of one of the most abundantly expressed Wolbachia proteins from infected Drosophila eggs and (ii) the subsequent cloning and characterization of the gene (wsp) that encodes it. The functionality of the wsp promoter region was also successfully tested in Escherichia coli. Comparison of sequences of this gene from different strains of Wolbachia revealed a high level of variability. This sequence variation correlated with the ability of certain Wolbachia strains to induce or rescue the cytoplasmic incompatibility phenotype in infected insects. As such, this gene will be a very useful tool for Wolbachia strain typing and phylogenetic analysis, as well as understanding the molecular basis of the interaction of Wolbachia with its host.  相似文献   

15.
Permina EA  Mironov AA  Gelfand MS 《Gene》2002,284(1-2):133-140
Lipopolysaccharide (LPS) is important for the virulence of Neisseria meningitidis, and is the target of immune responses. We took advantage of a monoclonal antibody (Mab B5) that recognises phosphoethanolamine (PEtn) attached to the inner core of meningococcal LPS to identify genes required for the addition of PEtn to LPS. Insertional mutants that lost Mab B5 reactivity were isolated and characterised, but failed to yield genes directly responsible for PEtn substitution. Subsequent genetic linkage analysis was used to define a region of DNA containing a single intact open reading frame which is sufficient to confer B5 reactivity to a B5 negative meningococcal isolate. The results provide an initial characterisation of the genetic basis of a key, immunodominant epitope of meningococcal LPS.  相似文献   

16.
Antibiotic-resistant Gram-positive bacteria are responsible for morbidity and mortality in healthcare environments. Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus and Streptococcus pneumoniae can all exhibit clinically relevant multidrug resistance phenotypes due to acquired resistance genes on mobile genetic elements. It is possible that clinically relevant multidrug-resistant Clostridium difficile strains will appear in the future, as the organism is adept at acquiring mobile genetic elements (plasmids and transposons). Conjugative transposons of the Tn916/Tn1545 family, which carry major antibiotic resistance determinants, are transmissible between these different bacteria by a conjugative mechanism during which the elements are excised by a staggered cut from donor cells, converted to a circular form, transferred by cell-cell contact and inserted into recipient cells by a site-specific recombinase. The ability of these conjugative transposons to acquire additional, clinically relevant antibiotic resistance genes importantly contributes to the emergence of multidrug resistance.  相似文献   

17.
The IncJ group of enterobacterial mobile genetic elements, which include R391, R392, R705, R997 and pMERPH, have been shown to be site-specific integrating elements encoding variable antibiotic and heavy metal resistance genes. They insert into a specific 17-bp site located in the prfC gene, encoding peptide release factor 3, in Escherichia coli and other hosts. A key feature of known IncJ elements is the presence of a site-specific recombination module consisting of an attachment site on the element and an integrase-encoding gene of the tyrosine recombinase class, which promotes integration between the attachment site on the element and a similar site on the host chromosome. We have cloned and sequenced the integrases from a number of known IncJ elements and designed PCR primers for specific amplification of this gene. Using conserved regions of enterobacterial prfC genes upstream and downstream of the insertion site, and conserved sequences at the ends of the integrated IncJ elements, we have designed specific primers to amplify across the integrated IncJ attL and attR junction fragments. Alignment of over 30 enterobacterial prfC-like genes indicates that the primers designed to amplify attR junction would amplify IncJ element: host junctions from a wide variety of hosts. The IncJ elements have been shown to sensitise recA(+)E. coli K12 strains to UV irradiation. A simple and rapid procedure for demonstrating this effect is described. These tools should enable the rapid detection of such elements in clinical and environmental settings.  相似文献   

18.
19.
Cordaux R 《Gene》2008,409(1-2):20-27
Insertion sequences are transposable elements that can represent substantial proportions of prokaryotic genomes and play a substantial role in shaping host genome evolution. As such, evaluating and understanding insertion sequence diversity is an important task to fulfill, because it is expected to yield new insight into the evolution of bacterial transposable elements and contribute to improve genome annotations. Here, I characterized an insertion sequence, termed ISWpi1, for which the taxonomic distribution appears to be restricted to the obligate intracellular alpha-Proteobacterium Wolbachia pipientis. ISWpi1 exhibits approximately 46% identity at the amino acid level with members of the IS1031 group of insertion sequences from the IS5 family. However, the IS1031 group is characterized by a transposase gene encoded by a single open reading frame, whereas the ISWpi1 transposase gene consists of two overlapping open reading frames presumably translated as a single protein via programmed translational frameshifting. Such structure suggests that ISWpi1 may instead be related to the IS427 group of insertion sequences from the IS5 family. Altogether, these data indicate that ISWpi1 extends the known spectrum of diversity of the IS5 family, and I propose to define a novel group of insertion sequences within the IS5 family typified by ISWpi1. Probable transpositional activity, relevant insertion site preferences and taxonomic specificity make ISWpi1 a promising tool for experimentally manipulating W. pipientis bacteria, especially in light of the increasing interest in developing these bacteria as tools for controlling insect disease vectors and agricultural pests.  相似文献   

20.
Aims: The Aedes albopictus C7‐10 cell line was infected with Wolbachia strains wRi and wAlbB to create C7‐10R and C7‐10B cell lines, respectively. We compared two different methods, fluorescence in situ hybridization staining and SYTO11 staining, to describe these new Wolbachia infections in C7‐10. Methods and Results: Both staining methods were as efficient to stain Wolbachia. A formula was developed to quantify Wolbachia infection. The infection levels in C7‐10B and C7‐10R differed. The live stain SYTO11 was found to be useful to visualize Wolbachia in replicating host cells. Its potential cytotoxic effect at high concentration was investigated. Conclusions: C7‐10 supported two Wolbachia infections, constituting new tools to study Wolbachia–host interactions. The different infection levels suggest that wRi and wAlbB have different requirements for their survival in C7‐10 host cell line. Observation of SYTO11‐stained live cells gave new insights on Wolbachia segregation pattern during host cell mitosis. Significance and Impact of the Study: Wolbachia‐induced phenotypes in their arthropod and worm hosts could potentially be used to control pest populations. However, the mechanisms underlying these phenotypes are difficult to study because of Wolbachia’s intracellular lifestyle. The Wolbachia infections in C7‐10 described here could be used as in vitro models to investigate Wolbachia biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号