首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Biological data suggests that activity patterns emerging in small- and large-scale neural systems may play an important role in performing the functions of the neural system, and in particular, neural computations. It is proposed in this paper that neural systems can be understood in terms of pattern computation and abstract communication systems theory. It is shown that analysing high-resolution surface EEG data, it is possible to determine abstract probabilistic rules that describe how emerging activity patterns follow earlier activity patterns. The results indicate the applicability of the proposed approach for understanding the working of complex neural systems.  相似文献   

2.
Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract.  相似文献   

3.
Synchronization of the activity in neural networks is a fundamental mechanism of brain function, putatively serving the integration of computations on multiple spatial and temporal scales. Time scales are thought to be nested within distinct spatial scales, so that whereas fast oscillations may integrate local networks, slow oscillations might integrate computations across distributed brain areas. We here describe a newly developed approach that provides potential for the further substantiation of this hypothesis in future studies. We demonstrate the feasibility and important caveats of a novel wavelet-based means of relating time series of three-dimensional spatial variance (energy) of fMRI data to time series of temporal variance of EEG. The spatial variance of fMRI data was determined by employing the three-dimensional dual-tree complex wavelet transform. The temporal variance of EEG data was estimated by using traditional continuous complex wavelets. We tested our algorithm on artificial signals with known signal-to-noise ratios and on empirical resting state EEG-fMRI data obtained from four healthy human subjects. By employing the human posterior alpha rhythm as an exemplar, we demonstrated face validity of the approach. We believe that the proposed method can serve as a suitable tool for future research on the spatiotemporal properties of brain dynamics, hence moving beyond analyses based exclusively in one domain or the other.  相似文献   

4.
5.
Firstly, a collective oscillation mode of the neural activity is derived from the neural network system by using the multicompartment equation and the projection operator technique. This technique takes into account higher order interactions among neurons. The solution of the equation gives a chain structure with an infinite number of circuit loops in which each of them is only composed of four neurons. The obtained eigenvalues are quite similar to the spectrum of frequencies of the EEG. Secondly, the time-dependent behavior of the observed EEG is simulated by starting from the elementary process of action potential trains of neurons, which includes the effect of the collective oscillation mode mentioned above. This gives a comprehensive derivation of the EEG from the neural activity of action potentials. The simulation assumes that information of the action potential trains can be transmitted to the EEG through the intermediate states of the postsynaptic potential trains and the slow waves. The paper reports that a slightly modulated activity of a relatively small amount of neurons can cause a strong influence on the shape of the global EEG and that the calculated results reproduce the characteristic features of the EEG in a rat such as the theta rhythm, the spindle wave and the arousal wave.  相似文献   

6.
EEG signals are important to capture brain disorders. They are useful for analyzing the cognitive activity of the brain and diagnosing types of seizure and potential mental health problems. The Event Related Potential can be measured through the EEG signal. However, it is always difficult to interpret due to its low amplitude and sensitivity to changes of the mental activity. In this paper, we propose a novel approach to incrementally detect the pattern of this kind of EEG signal. This approach successfully summarizes the whole stream of the EEG signal by finding the correlations across the electrodes and discriminates the signals corresponding to various tasks into different patterns. It is also able to detect the transition period between different EEG signals and identify the electrodes which contribute the most to these signals. The experimental results show that the proposed method allows the significant meaning of the EEG signal to be obtained from the extracted pattern.  相似文献   

7.
To elucidate the cortical control of handwriting, we examined time-dependent statistical and correlational properties of simultaneously recorded 64-channel electroencephalograms (EEGs) and electromyograms (EMGs) of intrinsic hand muscles. We introduced a statistical method, which offered advantages compared to conventional coherence methods. In contrast to coherence methods, which operate in the frequency domain, our method enabled us to study the functional association between different neural regions in the time domain. In our experiments, subjects performed about 400 stereotypical trials during which they wrote a single character. These trials provided time-dependent EMG and EEG data capturing different handwriting epochs. The set of trials was treated as a statistical ensemble, and time-dependent correlation functions between neural signals were computed by averaging over that ensemble. We found that trial-to-trial variability of both the EMGs and EEGs was well described by a log-normal distribution with time-dependent parameters, which was clearly distinguished from the normal (Gaussian) distribution. We found strong and long-lasting EMG/EMG correlations, whereas EEG/EEG correlations, which were also quite strong, were short-lived with a characteristic correlation durations on the order of 100 ms or less. Our computations of correlation functions were restricted to the spectral range (13–30 Hz) of EEG signals where we found the strongest effects related to handwriting. Although, all subjects involved in our experiments were right-hand writers, we observed a clear symmetry between left and right motor areas: inter-channel correlations were strong if both channels were located over the left or right hemispheres, and 2–3 times weaker if the EEG channels were located over different hemispheres. Although we observed synchronized changes in the mean energies of EEG and EMG signals, we found that EEG/EMG correlations were much weaker than EEG/EEG and EMG/EMG correlations. The absence of strong correlations between EMG and EEG signals indicates that (i) a large fraction of the EEG signal includes electrical activity unrelated to low-level motor variability; (ii) neural processing of cortically-derived signals by spinal circuitry may reduce the correlation between EEG and EMG signals.  相似文献   

8.
The question of how the collective activity of neural populations gives rise to complex behaviour is fundamental to neuroscience. At the core of this question lie considerations about how neural circuits can perform computations that enable sensory perception, decision making, and motor control. It is thought that such computations are implemented through the dynamical evolution of distributed activity in recurrent circuits. Thus, identifying dynamical structure in neural population activity is a key challenge towards a better understanding of neural computation. At the same time, interpreting this structure in light of the computation of interest is essential for linking the time-varying activity patterns of the neural population to ongoing computational processes. Here, we review methods that aim to quantify structure in neural population recordings through a dynamical system defined in a low-dimensional latent variable space. We discuss advantages and limitations of different modelling approaches and address future challenges for the field.  相似文献   

9.
Frontal cortex is thought to underlie many advanced cognitive capacities, from self-control to long term planning. Reflecting these diverse demands, frontal neural activity is notoriously idiosyncratic, with tuning properties that are correlated with endless numbers of behavioral and task features. This menagerie of tuning has made it difficult to extract organizing principles that govern frontal neural activity. Here, we contrast two successful yet seemingly incompatible approaches that have begun to address this challenge. Inspired by the indecipherability of single-neuron tuning, the first approach casts frontal computations as dynamical trajectories traversed by arbitrary mixtures of neurons. The second approach, by contrast, attempts to explain the functional diversity of frontal activity with the biological diversity of cortical cell-types. Motivated by the recent discovery of functional clusters in frontal neurons, we propose a consilience between these population and cell-type-specific approaches to neural computations, advancing the conjecture that evolutionarily inherited cell-type constraints create the scaffold within which frontal population dynamics must operate.  相似文献   

10.
《Journal of Physiology》2009,103(6):324-332
Thought-controlled neuroprostheses could allow paralyzed patients to interact with the external world using brain waves. Thus far, the fastest and more accurate control of neuroprostheses is achieved through direct recordings of neural activity [Nicolelis, M.A., 2001. Actions from thoughts. Nature 409, 403–407; Donoghue, J.P., 2002. Connecting cortex to machines: recent advances in brain interfaces. Nat. Neurosci. 5 (Suppl.), 1085–1088]. However, invasive recordings have inherent medical risks. Here we discuss some approaches that could enhance the speed and accuracy of non-invasive devices, namely, (1) enlarging the spectral analysis to include higher frequency oscillations, able to transmit substantial information over short analysis windows; (2) using spectral analysis procedures that minimize the variance of the estimates; and (3) transforming EEG recorded activity into local field potential estimates (eLFP). Theoretical and experimental arguments are used to explain why it is erroneous to think that scalp EEG cannot sense high frequency oscillations and how this might hinders further developments. We further illustrate how non-invasive eLFPs derived from the scalp-recorded electroencephalogram (EEG) can be combined with robust, broad band spectral analysis to accurately detect (off-line) the laterality of upcoming hand movements. Interestingly, the use of pattern recognition to select the brain voxels differentially engaged by the explored tasks leads to sound neural activation images. Consequently, our results indicate that both research lines, i.e., neuroprosthetics and electrical neuroimaging, might effectively benefit from their mutual interaction.  相似文献   

11.
Epilepsy is characterized by paradoxical patterns of neural activity. They may cause different types of electroencephalogram (EEG), which dynamically change in shape and frequency content during the temporal evolution of seizure. It is generally assumed that these epileptic patterns may originate in a network of strongly interconnected neurons, when excitation dominates over inhibition. The aim of this work is to use a neural network composed of 50 x 50 integrate-and-fire neurons to analyse which parameter alterations, at the level of synapse topology, may induce network instability and epileptic-like discharges, and to study the corresponding spatio-temporal characteristics of electrical activity in the network. We assume that a small group of central neurons is stimulated by a depolarizing current (epileptic focus) and that neurons are connected via a Mexican-hat topology of synapses. A signal representative of cortical EEG (ECoG) is simulated by summing the membrane potential changes of all neurons. A sensitivity analysis on the parameters describing the synapse topology shows that an increase in the strength and in spatial extension of excitatory vs. inhibitory synapses may cause the occurrence of travelling waves, which propagate along the network. These propagating waves may cause EEG patterns with different shape and frequency, depending on the particular parameter set used during the simulations. The resulting model EEG signals include irregular rhythms with large amplitude and a wide frequency content, low-amplitude high-frequency rapid discharges, isolated or repeated bursts, and low-frequency quasi-sinusoidal patterns. A slow progressive temporal variation in a single parameter may cause the transition from one pattern to another, thus generating a highly non-stationary signal which resembles that observed during ECoG measurements. These results may help to elucidate the mechanisms at the basis of some epileptic discharges, and to relate rapid changes in EEG patterns with the underlying alterations at the network level.  相似文献   

12.
The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.  相似文献   

13.
In 1935 Edwin Boring proposed that each attribute of sensation reflects the activity of a different neural circuit. If this idea is valid, it could facilitate both psychophysical and neurophysiological research on sensory systems. We think it likely that Boring's formulation is correct for three reasons: 1) Different sensory attributes reflect conscious information about different parameters of a stimulus. To be measured by any device, each of these parameters must be individually computed. Different neural circuits would appear to be necessary for the nervous system to carry out these different computations. 2) Perceived information about different sensory attributes can be made to diverge by appropriate manipulations of the stimuli. If there is a rigorous relationship between conscious sensory experience and neural activity, such a divergence implies that different sensory attributes are served by different neural circuits. 3) Accurate information about a sensory attribute requires that a human observer's attention be focused on that attribute. Changes in direction of attention are thought to involve a process of switching from one neural circuit to another, and provide another way to cause perceived information about different sensory attributes to diverge.  相似文献   

14.
The associative net as a model of biological associative memory is investigated. Calculating the output pattern retrieved from a partially connected associative net presented with noisy input cues involves several computations. This is complicated by variations in the dendritic sums of the output units due to errors in the cue and differences in input activity and unit usage. The possible implementation of these computations by biological neural machinery is unclear. We demonstrate that a relatively simple transformation can reduce variation in the dendritic sums. This leads to a winners-take-all type of strategy that produces increased recall performance which is equivalent to the more complicated optimal strategy proposed by others. We describe in detail the possible biological implications of our strategies, the novel feature of which ascribes a role to the NMDA and non-NMDA channels found in hippocampal pyramidal cells. Received: 13 April 1994 / Accepted: 25 October 1994  相似文献   

15.
Electroencephalography (EEG) is an effective, efficient, and noninvasive method of assessing and recording brain activity. Given the excellent temporal resolution, EEG can be used to examine the neural response related to specific behaviors, states, or external stimuli. An example of this utility is the assessment of the mirror neuron system (MNS) in humans through the examination of the EEG mu rhythm. The EEG mu rhythm, oscillatory activity in the 8-12 Hz frequency range recorded from centrally located electrodes, is suppressed when an individual executes, or simply observes, goal directed actions. As such, it has been proposed to reflect activity of the MNS. It has been theorized that dysfunction in the mirror neuron system (MNS) plays a contributing role in the social deficits of autism spectrum disorder (ASD). The MNS can then be noninvasively examined in clinical populations by using EEG mu rhythm attenuation as an index for its activity. The described protocol provides an avenue to examine social cognitive functions theoretically linked to the MNS in individuals with typical and atypical development, such as ASD.   相似文献   

16.
The glutamate transporter GLT-1 is responsible for the largest proportion of total glutamate transport. Recently, it has been demonstrated that ceftriaxone (CEF) robustly increases GLT-1 expression. In addition, physiological studies have shown that GLT-1 up-regulation strongly affects synaptic plasticity, and leads to an impairment of the prepulse inhibition, a simple form of information processing, thus suggesting that GLT-1 over-expression may lead to dysfunctions of large populations of neurons. To test this possibility, we assessed whether CEF affects cortical electrical activity by using chronic electroencephalographic (EEG) recordings in male WKY rats. Spectral analysis showed that 8 days of CEF treatment resulted in a delayed reduction in EEG theta power (7-9 Hz) in both frontal and parietal derivations. This decrease peaked at day 10, i.e., 2 days after the end of treatment, and disappeared by day 16. In addition, we found that the same CEF treatment increased motor activity, especially when EEG changes are more prominent. Taken together, these data indicate that GLT-1 up-regulation, by modulating glutamatergic transmission, impairs the activity of widespread neural circuits. In addition, the increased motor activity and prepulse inhibition alterations previously described suggest that neural circuits involved in sensorimotor control are particularly sensitive to GLT-1 up-regulation.  相似文献   

17.
This paper presents a new approach to speed up the operation of time delay neural networks. The entire data are collected together in a long vector and then tested as a one input pattern. The proposed fast time delay neural networks (FTDNNs) use cross correlation in the frequency domain between the tested data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented time delay neural networks is less than that needed by conventional time delay neural networks (CTDNNs). Simulation results using MATLAB confirm the theoretical computations.  相似文献   

18.
《IRBM》2019,40(3):183-191
ObjectiveThe aim was to use a new method to analyze the nonlinear dynamic characteristics of the multi-kinetics neural mass model. We hope that this new method can be as an auxiliary judgment tool for the diagnosis of brain diseases and the identification of brain activity states.MethodsWe apply the Lorenz plot to analyze the nonlinear dynamic characteristics of electroencephalogram (EEG) signals from the multi-kinetics neural mass models. The standard deviations in two orthogonal directions of the Lorenz plot are further used to quantify the nonlinear dynamic characteristics of EEG signals.ResultsThe results show that the normalized signal frequency power spectrum may not be able to distinguish normal EEG signals and epileptiform spikes, but the Lorenz plot can distinguish the normal EEG signals and epileptiform spikes effectively. For EEG signals with multi-rhythms, the Lorenz plot of all the simulated signals are oval, but the value of SD1/SD2 increases monotonically when the multi-rhythm EEG signals change from low frequency to high frequency.ConclusionThe Lorenz plot of EEG signals with different rhythms presents different distribution. It is an effective nonlinear analysis method for EEG signals.  相似文献   

19.
Some cortical circuit models study the mechanisms of the transforms from visual inputs to neural responses. They model neural properties such as feature tunings, pattern sensitivities, and how they depend on intracortical connections and contextual inputs. Other cortical circuit models are more concerned with computational goals of the transform from visual inputs to neural responses, or the roles of the neural responses in the visual behavior. The appropriate complexity of a cortical circuit model depends on the question asked. Modeling neural circuits of many interacting hypercolumns is a necessary challenge, which is providing insights to cortical computations, such as visual saliency computation, and linking physiology with global visual cognitive behavior such as bottom-up attentional selection.  相似文献   

20.
It is a long-established fact that neuronal plasticity occupies the central role in generating neural function and computation. Nevertheless, no unifying account exists of how neurons in a recurrent cortical network learn to compute on temporally and spatially extended stimuli. However, these stimuli constitute the norm, rather than the exception, of the brain''s input. Here, we introduce a geometric theory of learning spatiotemporal computations through neuronal plasticity. To that end, we rigorously formulate the problem of neural representations as a relation in space between stimulus-induced neural activity and the asymptotic dynamics of excitable cortical networks. Backed up by computer simulations and numerical analysis, we show that two canonical and widely spread forms of neuronal plasticity, that is, spike-timing-dependent synaptic plasticity and intrinsic plasticity, are both necessary for creating neural representations, such that these computations become realizable. Interestingly, the effects of these forms of plasticity on the emerging neural code relate to properties necessary for both combating and utilizing noise. The neural dynamics also exhibits features of the most likely stimulus in the network''s spontaneous activity. These properties of the spatiotemporal neural code resulting from plasticity, having their grounding in nature, further consolidate the biological relevance of our findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号