首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Do muscle fiber properties commonly associated with fiber types in adult animals and the population distribution of these properties require normal activation patterns to develop? To address this issue, the activity of an oxidative [succinic dehydrogenase (SDH)] and a glycolytic [alpha-glycerophosphate dehydrogenase (GPD)] marker enzyme, the characteristics of myosin adenosinetriphosphatase (myosin ATPase, alkaline preincubation), and the cross-sectional area of single fibers were studied. The soleus and medial gastrocnemius of normal adult cats were compared with cats that 6 mo earlier had been spinally transected at T12-T13 at 2 wk of age. In control cats, SDH activity was higher in dark than light ATPase fibers in the soleus and higher in light than dark ATPase fibers in the medial gastrocnemius. After transection, SDH activity was similar to control in both muscles. GPD activity appeared to be elevated in some fibers in each fiber type in both muscles after transection. The cross-sectional areas most affected by spinal transection were light ATPase fibers of the soleus and dark ATPase fibers of the medial gastrocnemius, the predominant fiber type in each muscle. These data demonstrate that although the muscle fibers of cats spinalized at 2 wk of age presumably were never exposed to normal levels of activation, the activity of an oxidative marker enzyme was maintained or elevated 6 mo after spinal transection. Furthermore, although the absolute enzyme activities in some fibers were elevated by transection, three functional protein systems commonly associated with fiber types, i.e., hydrolysis of ATP by myosin ATPase and glycolytic (GPD) and oxidative (SHD) metabolism, developed in a coordinated manner typical of normal adult muscles.  相似文献   

2.
The oxidative capacity and cross-sectional area of muscle fibers were compared between the costal and crural regions of the cat diaphragm and across the abdominal-thoracic extent of the muscle. Succinate dehydrogenase (SDH) activity of individual fibers was quantified using a microphotometric procedure implemented on an image-processing system. In both costal and crural regions, population distributions of SDH activities were unimodal for both type I and II fibers. The continuous distribution of SDH activities for type II fibers indicated that no clear threshold exists for the subclassification of fibers based on differences in oxidative capacity (e.g., the classification of fast-twitch glycolytic and fast-twitch oxidative glycolytic fiber types). No differences in either SDH activity or cross-sectional area were noted between fiber populations of the costal and crural regions. Differences in SDH activity and cross-sectional area were noted, however, between fiber populations located on the abdominal and thoracic sides of the costal region. Both type I and II fibers on the abdominal side of the costal diaphragm were larger and more oxidative than comparable fibers on the thoracic side.  相似文献   

3.
To determine whether long-term reductions in neuromuscular activity result in alterations in metabolic capacity, the activities of oxidative, i.e., succinate dehydrogenase (SDH) and citrate synthase (CS), and glycolytic, i.e., alpha-glycerophosphate dehydrogenase (GPD), enzyme markers were quantified in rat soleus muscles 1, 3, and 6 mo after a complete spinal cord transection (ST). In addition, the proportional content of lactate dehydrogenase (LDH) isozymes was used as a marker for oxidative and glycolytic capacities. The myosin heavy chain (MHC) isoform content of a fiber served as a marker of phenotype. In general, MHC isoforms shifted from MHC1 toward MHC2, particularly MHC2x, after ST. Mean SDH and CS activities were higher in ST than control at all time points. The elevated SDH and CS activities were indicative of an enhanced oxidative capacity. GPD activities were higher in ST than control rats at all time points. The increase in activity of SDH was larger than GPD. Thus the GPD-to-SDH (glycolytic-to-oxidative) ratio was decreased after ST. Compared with controls, total LDH activity increased transiently, and the LDH isozyme profile shifted from LDH-1 toward LDH-5, indicative of an enhanced glycolytic capacity. Combined, these results indicate that 1) the metabolic capacities of soleus fibers were not compromised, but the interrelationships among oxidative and glycolytic capacity and MHC content were apparently dissociated after ST; 2) enhancements in oxidative and glycolytic enzyme activities are not mutually exclusive; and 3) chronic reductions in skeletal muscle activity do not necessarily result in a reduced oxidative capacity.  相似文献   

4.
The role of neuromuscular activity in maintaining the normal enzyme heterogeneity found in a predominantly fast mixed muscle was studied. Enzymatic profiles of single fibers in the adult cat medial gastrocnemius (MG) were examined after almost complete elimination of neuromuscular activity for 6 mo. Inactivity was achieved by spinal cord isolation (SI), i.e., spinal transection at T12-T13 and L7-S1 combined with bilateral dorsal rhizotomy between the two transection sites. Cross-sectional area and succinate dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (GPD) activities were determined in a population of fibers identified in frozen serial cross sections. Each fiber was categorized as light or dark on the basis of its staining characteristics for qualitative myosin adenosinetriphosphatase (ATPase), alkaline preincubation, and its reaction to fast and slow myosin heavy chain (MHC) antibodies. SI resulted in a conversion of nearly all light (approximately 36% in the control) to dark ATPase fibers. Virtually all MG fibers in the SI cats reacted with the fast MHC antibody, whereas very few fibers reacted with slow MHC antibody. On the basis of fiber cross-sectional area, it was estimated that the MG atrophied by approximately 10% after SI. Compared with the mean of the dark and light ATPase fibers in control (weighted by the percent fiber type distribution), mean SDH activity was significantly lower (approximately 70%) and mean GPD activity was significantly higher (approximately 120%) in the SI cats. These data indicate that prolonged electrical silence of a mixed fast hindlimb extensor results in virtually all fibers expressing fast MHC as well as oxidative and glycolytic enzyme profiles normally observed in fast glycolytic fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Sorbitol, the primary photosynthate and translocated carbohydrate in apple (Malusxdomestica Borkh.), is converted to fructose by sorbitol dehydrogenase (SDH; EC 1.1.1.14) which is active in apple fruit throughout development. In the apple genome, nine SDH genes have been isolated and their sequences characterized, but their individual expression patterns during apple fruit set and development have not been determined. The objective of this work was to ascertain if SDH genes are differentially expressed and how their patterns of expression may relate to SDH activity in apple seed and cortex during early fruit development. Seed SDH activity was found to be much higher than cortex SDH activity per mg and g fresh weight (FW), and seed SDH activity contributed significantly to whole fruit SDH activity during weeks 2-5 after bloom. Five of the nine SDH genes present in the apple genome were expressed in apple fruit. Two SDH genes, SDH1 and SDH3, were expressed in both seed and cortex tissues. SDH2 expression was limited to cortex, while SDH6 and SDH9 were expressed in seed tissues only. SDH isomeric proteins of different pI values were detected in apple fruit. SDH isomers with pI values of 4.2, 4.8, 5.5, and 6.3 were found in seeds, and SDH isomers with pI values of 5.5, 6.3, 7.3, and 8.3 were found in cortex. The present work is the first to show that SDH is highly active in apple seed and that SDH genes are differentially expressed in seed and cortex during early development.  相似文献   

6.
Mercury-induced renal tubular lesions in the rat present histochemically with a decrease of succinate dehydrogenase (SDH), malate dehydrogenase (MDH), glucose-6-phosphate dehydrogenase (G-6-PD), and unspecific esterase (UE), but with an increase of lactate dehydrogenase (LDH), indicating a drop of energy supply as well as a switch from oxidative to glycolytic energy production. L-thyroxine has the same effect on SDH, G-6-PD, and LDH, but an inverse effect on MDH and UE, pointing to stimulation of gluconeogenesis. However, administration of L-thyroxine to animals which have been submitted to sublimate intoxication even further decreases the MDH and UE activity while raising or partly restoring the activity of LDH, SDH, and G-6-PD. This observation is interpreted as an attempt of the damaged epithelial cell, as the gluconeogenesis ceases, to gain relatively more energy supply for the benefit of the vitally indispensable tubular Na+ reabsorption.  相似文献   

7.
Lizard skeletal muscle fiber types were investigated in the iliofibularis (IF) muscle of the desert iguana (Dipsosaurus dorsalis). Three fiber types were identified based on histochemical staining for myosin ATPase (mATPase), succinic dehydrogenase (SDH), and alphaglycerophosphate dehydrogenase (alphaGPDH) activity. The pale region of the IF contains exclusively fast-twitch-glycolytic (FG) fibers, which stain dark for mATPase and alphaGPDH, light SDH. The red region of the IF contains fast-twitch-oxidative-glycolytic (FOG) fibers, which stain dark for all three enzymes, and tonic fibers, which stain light for mATPase, dark for SDH, and moderate for alphaGPDH. Enzymatic activities of myofibrillar ATPase, citrate synthase, and alphaGPDH confirm these histochemical interpretations. Lizard FG and FOG fibers possess twitch contraction times and resistance to fatigue comparable to analogous fibers in mammals, but are one-half as oxidative and several times as glycolytic as analogous fibers in rats. Lizard tonic fibers demonstrate the acetylcholine sensitivity common to other vertebrate tonic fibers.  相似文献   

8.
Sorbitol dehydrogenase activity (SDH) has been determined in various organs of embryonic and adult chickens. SDH is present in 24-hour embryos, and its activity continues to rise during the next 48 hours. During embryonic development and after hatching, regional differences in SDH activity are demonstrable in the organs of the animal. These differences concern both level of enzyme activity and temporal changes with development. No correlation could be established between enzymatic activity and the fructose concentration of the organs studied.  相似文献   

9.
The activities ofl-glutamate decarboxylase (GAD), GABA-transaminase (GABA-T), choline acetyltransferase (CAT), and cysteic and cysteinesulfinic acids decarboxylase (CAD/CSAD) in putamen and frontal cortex in both Huntington's chorea and normal tissues were measured. The greatest difference between Huntington's and normal tissues occurred in putamen, in which the apparent CSAD activity was reduced by 85%, while no difference was observed in frontal cortex. GAD, CAD, and CAT activities were also reduced in putamen by 65%, 63%, and 42%, respectively (P<0.05). Slight reduction in the enzyme activities was also observed in frontal cortex. However, these reductions appeared to be statistically insignificant (P>0.05 in all cases). GABA-T showed little difference in both putamen and frontal cortex in Huntington's chorea and normal tissues. GAD and GABA-T from Huntington's tissues were indistinguishable from those obtained from normal tissues by double diffusion test and by microcomplement fixation test, which is capable of distinguishing proteins with a single amino acid substitution. Furthermore, the similarity of the complement fixation curves for GAD from Huntington's and normal tissues suggests that the decrease in GAD activity is probably due to the reduction in the number of GAD molecules, presumably through the loss of neurons, and not due to the inhibition or inactivation of GAD activity by toxic substances which might be present in Huntington's chorea.  相似文献   

10.
粘虫飞行肌中与能量代谢有关的酶活性研究   总被引:2,自引:1,他引:2  
该文报道粘虫Mythimna separata (Walker ) 蛹及不同日龄成虫飞行肌中与3 种代谢途径有关的5 种酶,即3-磷酸甘油醛脱氢酶(GAPDH)、3-磷酸甘油脱氢酶(GDH)、乳酸脱氢酶(LDH)、3-羟酰辅酶A 脱氢酶(HOAD)、柠檬酸合成酶(CS)活性的变化。成虫羽化后,这5 种酶的活性大多数都高于蛹期,表明成虫飞行肌与能量代谢有关的活动比蛹期高。不同日龄成虫飞行肌的能量代谢特点为:成虫羽化后糖酵解循环的活性增加;1 日龄进行糖酵解的能力较强,2 日龄即具备较强的脂肪代谢能力,2~5日龄糖及脂肪代谢的能力基本相当,但7日龄脂肪代谢的能力较强。1~7日龄粘虫蛾飞行肌具有较高的GDH 和LDH活性,这既是粘虫蛾飞行肌能进行高度有氧代谢的重要标志,也是其具有一定无氧代谢能力的最好说明,而飞行肌中较高的CS活性则是粘虫蛾具有较强飞行能力的重要保证。对成虫GAPDH∶HOAD 活性进行分析比较的结果还显示,粘虫蛾持续飞行的能源物质既有脂类也有糖类,而不仅仅只限于脂类。  相似文献   

11.
Glucose-6-phosphate dehydrogenase (G6PDH), succinate dehydrogenase (SDH) activity and the single-stranded RNA (ssRNA) content of isolated hepatocytes of different ploidy classes from adult male rats have been studied after partial hepatectomy using quantitative cytochemical means. The SDH activity and ssRNA content in all classes of hepatocytes are decreased during the first hours after operation followed by an increase above control values. The increase of both SDH activity and ssRNA content is significant only in the mononuclear diploid (MD) cells but not in the hepatocytes of higher ploidy classes and is related with the mitotic wave at 32 h after hepatectomy. After the mitotic wave, the values quickly return to normal levels. The G6PDH activity does not show any significant change in hepatocytes other than MD cells. In MD cells the G6PDH activity is elevated on a highly significant level up to a maximum value of 3.5 times the control value at 48 h after operation. The G6PDH activity in MD cells is returned to normal values within 14 days after operation. It is concluded that: 1. The MD cells show a distinct metabolic behaviour due to their function as stem cells of liver parenchyma and retain at least some of their fetal characteristics. 2. G6PDH activity is not a transformation-linked discriminant for neoplastic metabolism.  相似文献   

12.
Surfactant protein B (SP-B) is a developmentally and hormonally regulated lung protein that is required for normal surfactant function. We generated transgenic mice carrying the human SP-B promoter (-1,039/+431 bp) linked to chloramphenicol acetyltransferase (CAT). CAT activity was high in lung and immunoreactive protein localized to alveolar type II and bronchiolar epithelial cells. In addition, thyroid, trachea, and intestine demonstrated CAT activity, and each of these tissues also expressed low levels of SP-B mRNA. Developmental expression of CAT activity and SP-B mRNA in fetal lung were similar and both increased during explant culture. SP-B mRNA but not CAT activity decreased during culture of adult lung, and both were reduced by transforming growth factor (TGF)-beta(1). Treatment of adult mice with intratracheal bleomycin caused similar time-dependent decreases in lung SP-B mRNA and CAT activity. These findings indicate that the human SP-B promoter fragment directs tissue- and lung cell-specific transgene expression and contains cis-acting elements involved in regulated expression during development, fetal lung explant culture, and responsiveness to TGF-beta and bleomycin-induced lung injury.  相似文献   

13.
人参皂甙Rb1,Rg1,Re和Rh1对细胞脱氢酶活性的影响   总被引:2,自引:0,他引:2  
应用显微分光光度术,定量地分析了人参皂甙Rb_1、Rg_1、Re、Rh_1对人胚肺成纤维细胞(2BS)和HeLa细胞脱氢酶活性的影响。结果表明,4种单体皂甙增加了高代龄2BS细胞内乳酸脱氢酶(LDH),琥珀酸脱氢酶(SDH),葡萄糖-6-磷酸脱氢酶(G-6-PDH)和丙酮酸脱氢酶(PVO)的活性,降低了HeLa细胞内这几种酶的活性。  相似文献   

14.
Adult mice, Mus booduga were fed orally with bennzenehexachloride (BHC) at a dose of 50 mg/kg body weight every day for 1, 5 and 15 days. Significant decrease in the pyruvate content was observed at all periods of treatment. In support of this increase in lactate content and lactate dehydrogenase (LDH) activity was noticed in all the three tissues. Enzymes of TCA cycle namely isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) were inhibited suggesting abnormality in mitochondrial oxidative metabolism as a consequence of BHC toxicity.  相似文献   

15.
Diaphragm capillarity and oxidative capacity during postnatal development.   总被引:1,自引:0,他引:1  
In the cat diaphragm, fiber capillarity, cross-sectional area, and succinate dehydrogenase (SDH) activity were measured across the first 6 wk of postnatal development. Fibers were classified as type I, IIa, IIb, or IIc on the basis of staining for myofibrillar adenosinetriphosphatase (ATPase). Capillaries were identified in sections stained for ATPase at pH 4.2. Fiber cross-sectional areas and SDH activities were quantified using an image-processing system. During postnatal development, the proportions of type I fibers increased while type II fibers decreased. At birth, all type II fibers were IIc. From the 1st to the 2nd postnatal wk, the proportion of type IIc fibers decreased while the numbers of IIa and IIb increased. Thereafter the proportion of type IIb fibers continued to increase while the number of IIa steadily declined. At birth, capillarity, cross-sectional areas, and SDH activities of type I and II fibers were low compared with other postnatal age groups. Fiber cross-sectional areas increased progressively with age. The number of capillaries surrounding type I and II fibers increased markedly by the 2nd wk and then continued to increase at a slower rate. The number of capillaries per fiber area reached a peak by the 2nd wk and then declined as fiber cross-sectional area increased. Postnatal changes in capillarity depended on fiber type, being greatest in IIb. SDH activities of type I and II fibers were initially low during the first 2 postnatal wk and then peaked by the 3rd wk. After the 6th wk, fiber SDH activities decreased to adult values. Among the type II fibers, IIb showed the greatest change in SDH activity during early postnatal development.  相似文献   

16.
DEVELOPMENTAL CHANGES IN GLYCOLYSIS IN RAT CEREBRAL CORTEX   总被引:2,自引:0,他引:2  
Abstract— The ATP concentration in infant rat cerebral cortex slices which were incubated aerobically with glucose (5 m m ) as substrate was much higher than in those from the adult. The higher ATP concentration in slices from young rat was also obtained when they were incubated aerobically with pyruvate (10 m m ), dl -lactate (20 m m ) and dl -3-nydroxybutyrate (20 m m ) However, when the slices were incubated anaerobically with glucose, the ATP concentration was very low. Thus, the formation of ATP in the slices from the young rat was thought to be mainly due to their oxidative metabolism, as in those from the adult. The amounts of glycolytic key enzymes in rat cerebral cortex (hexokinase. phosphofructokinase and pyruvate kinase) increased with age. Glycolysis was actually shown to be less active in the cerebral slices from young rats than from the adult. In addition it is known that the tricarboxylic acid cycle enzymes in rat cerebrum also increase with age. Consequently, the activity with respect to ATP formation must be lower in the cerebral cortex slices from young rats than from the adult. The fact that ATP was nevertheless higher in the slices from young rats may be explained by a lower rate of degradation. Developmental increases in the amounts of Na+-K+-ATPase and Mg2+ -ATPase in rat cerebral cortex were greater than those of the glycolytic key enzymes. These are discussed in relation to the observation that the rate of aerobic glycolysis in slices from cerebral cortex of young rats was not increased by d -glutamate (5 m m ) and high potassium (50 m m ).  相似文献   

17.
18.
I Sabell  P Morata  J Quesada  M Morell 《Enzyme》1985,34(1):27-32
The glycolytic metabolism through the key enzymes, hexokinase, phosphofructokinase, pyruvate kinase and lactate dehydrogenase, have been studied in the brain areas: anterior cortex, amygdala, hypothalamus, septum and hippocampus in adult rats with pharmacologically induced hyperthyroidism. The oxidative metabolism of glucose is accelerated in most brain areas by treatment with high doses of T3, as is shown by the increase in HK activity, approaching normality on reducing the dose. This decrease can also by observed in the PFK activity through the effect of assayed doses of thyroxine. The anterior cortex is the only brain area that does not show significant variations of PK activity through the effects of treatment with thyroid hormones. On the other hand, a general inhibition of the glycolytic anaerobic pathway by treatment with T3 was observed.  相似文献   

19.
The activity of 20 alpha hydroxysteroid dehydrogenase (20 alpha SDH), a T lymphocyte-associated enzyme, was measured in fetal liver, thymus, spleen, and bone marrow cells from NZB, NZW, and (NZB X NZW)F1 (B/W) mice. There was an age-dependent increase of 20 alpha SDH activity in bone marrow cells, and a decrease in thymocytes and splenic T lymphocytes. Treatment with anti-theta and complement did not reduce the 20 alpha SDH activity of bone marrow and fetal liver cells, but reduced the activity of spleen cells. PHA stimulates both 20 alpha SDH activity and thymidine incorporation in splenic, bone marrow, and fetal liver lymphocytes. The results suggest that the enzyme in the bone marrow and fetal liver is located in pre-T lymphocytes. Enzymatic activity in bone marrow cells taken from female B/W mice (older than 7 months) was 40 to 20% lower than in male mice. Orchidectomy, but not ovariectomy, caused a significant decrease in thymocyte 20 alpha SDH activity. Orchidectomy depressed and ovariectomy enhanced 20 alpha SDH activity of bone marrow cells. The 20 alpha SDH activity of fetal liver cells from B/W mice was twice as high as in either parent strain. No 20 alpha SDH activity was found in fetal liver cells taken from BALB/C SJL or C57BL/6 mice. A model is proposed to explain the age- and sex-related changes in 20 alpha SDH activity of pre-T and T lymphocytes in healthy and pathologic conditions.  相似文献   

20.
1. Cross sections from the middle of the gluteus medius were removed from 10 adult horses and used to evaluate changes in histochemically determined muscle fiber type and biochemically determined metabolic enzyme activities as a function of sample depth. 2. Muscle fiber types determined using histochemical methods for myosin ATPase (pH 9.4) and succinic dehydrogenase (SDH) activity indicated percent fast-twitch glycolytic (FG) muscle fibers decreased and slow-twitch oxidative (SO) fibers increased as a function of increasing sampling depth. 3. Percent histochemically determined fast-twitch oxidative glycolytic (FOG) fibers decreased slightly only in the deepest region of the gluteus medius. 4. Citrate synthase (CS) enzymatic activity, used as a marker for mitochondrial oxidative potential, increased 2.5-fold in activity per g of muscle protein from 1 to 8 cm sampling depth. 5. 3-hydroxyacyl-CoA dehydrogenase (HAD) enzymatic activity, used as a marker for lipid oxidation potential, increased 3-fold in activity per g of muscle protein when the depth increased from 1 to 8 cm. 6. Phosphorylase (PS) enzymatic activity, used as a marker for potential glycogen utilization, decreased 50% in activity per g of muscle protein when going from 1 to 8 cm. 7. Lactate dehydrogenase (LDH) enzymatic activity, used as a marker for anaerobic glycolytic potential, decreased about 50% in activity as the sampling depth increased from 1 to 8 cm. 8. In summary, the superficial portion of the equine gluteus medius was found to be more glycolytic and less aerobic in its metabolic profile than deeper regions. The muscle became progressively more aerobic and less glycolytic with increasing sampling depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号