首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used site-directed mutagenesis and molecular modeling to investigate the inactivation of an invertebrate acetylcholinesterase (AChE), ChE2 from amphioxus, by the sulfhydryl reagents 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM), creating various mutants, including C310A and C466A, and the double mutants C310A/C466A and C310A/F312I, to assess the relative roles of the two cysteines and a proposal that the increased rate of inactivation in the F312I mutant is due to increased access to Cys310. Our results suggest that both cysteines may be involved in inactivation by sulfhydryl reagents, but that the cysteine in the vicinity of the acyl pocket is more accessible. We speculate that the inactivation of aphid AChEs by sulfhydryl reagents is due to the presence of a cysteine homologous to Cys310. We also investigated the effects of various reversible cholinergic ligands, which bind to different subsites of the active site of the enzyme, on the rate of inactivation by DTNB of wild type ChE2 and ChE2 F312I. For the most part the inhibitors protect the enzymes from inactivation by DTNB. However, a notable exception is the peripheral site ligand propidium, which accelerates inactivation in the wild type ChE2, but retards inactivation in the F312I mutant. We propose that these opposing effects are the result of an altered allosteric signal transduction mechanism in the F312I mutant compared to the wild type ChE2.  相似文献   

2.
A leuB strain of Thermus thermophilus TTY1, was transformed with a plasmid vector that directed expression of 3-isopropylmalate dehydrogenase (IPMDH) of Saccharomyces cerevisiae encoded by the LEU2 gene. The original strain could not grow at 50 degrees C without leucine, probably because of the low stability of S. cerevisiae IPMDH. The mutants that could grow without leucine were selected at 50 degrees, 60 degrees, 62 degrees, 65 degrees, 67 degrees, and 70 degrees C, step by step. All the mutant strains except for one isolated at 50 degrees C accumulated mutations. Mutations were serially accumulated: Glu255Val, Asn43Tyr, Ala62Thr, Asn110Lys, and Alal 12Val, respectively, at each step. The analyses of residual activity after heat treatment and the denaturation profile as monitored by circular dichroism showed that thermal stability was increased with accumulation of the mutations. The kinetic parameters of most mutant enzymes were similar to those of the wild type. However, some mutant enzymes showed a reverse correlation between stability and activity: the enzymes with a large increase in thermal stability showed lower activity. Although the wild-type enzyme is unstable in the absence of glycerol, the stabilizing effect of glycerol was not observed for all the mutant enzymes containing the Glu255Val substitution, which is assumed to be located at the hydrophobic interface between two subunits.  相似文献   

3.
The restriction endonuclease BstVI from Bacillus stearothermophilus V contains three cysteine residues at positions 134, 167 and 180. Titration of Cys residues with DTNB showed that none of them are involved in disulphide bond formation. Cysteine triplets 134 and 167 were modified by recombinant PCR to introduce a serine residue in each case. The mutated genes were cloned into pGEM-T vector and transformed into E. coli JM109. Even though pGEM-T is not designed for expression, the mutant proteins were efficiently expressed in E. coli. The endonuclease carrying the mutation C134S was purified to homogeneity but appeared to be very unstable. In contrast, the C167S mutant enzyme was stable when pure and was studied biochemically. This mutant enzyme was as stable and resistant to protein-denaturing agents as the wild type enzyme. The activity of both enzymes was not affected by preincubations of 2 h at 80 degrees C. A short preincubation at 95 degrees C caused a complete inactivation of the mutant enzyme while the wild type endonuclease retained 30% of its activity. Moreover, the C167S BstVI was more susceptible to be hydrolyzed by proteinase K and trypsine compared to the wild type endonuclease. These results show that the substitution Cys --> Ser at position 167 affects the configuration and thermostability of BstVI restriction endonuclease.  相似文献   

4.
Previously we used site-directed mutagenesis, in vitro expression, and molecular modeling to investigate the inactivation of an invertebrate acetylcholinesterase, cholinesterase 2 from amphioxus, by the sulfhydryl reagents 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM). We created the mutants C310A, C466A, C310A/C466A and C310A/F312I to assess the roles of the two cysteines and a proposal that the increased rate of inactivation previously found in an F312I mutant was due to increased access of sulfhydryl reagents to Cys310. Our results indicated that both of the cysteines could be involved in inactivation by sulfhydryl reagents, but that the cysteine near the acyl pocket was more accessible. We speculated that the inactivation of aphid AChEs by sulfhydryl reagents was due to the presence of a cysteine homologous to Cys310 and proposed that this residue could be a target for a specific insecticide. Here we reconsider this proposal.  相似文献   

5.
The cytoplasmic leucyl-tRNA synthetases of Neurospora crassa wild type (grown at 37 degrees C) and mutant (grown at 28 degrees C) were purified approximately 1770-fold and 1440-fold respectively. Additional enzyme preparations were carried out with mutant cells grown for 24 h at 28 degrees C and transferred then to 37 degrees C for 10-70 h of growth. The mitochondrial leucyl-tRNA synthetase of the wild type was purified approximately 722-fold. The mitochondrial mutant enzyme was found only in traces. The cytoplasmic leucyl-tRNA synthetase from the mutant (grown at 37 degrees C) in vivo is subject of a proteolytic degradation. This leads to an increased pyrophosphate exchange, without altering aminoacylation. Proteolysis in vitro by trypsin or subtilisin of isolated cytoplasmic wild-type and mutant leucyl-tRNA synthetases, however, did not establish and difference in the degradation products and in their catalytic properties. Comparing the cytoplasmic wild-type and mutant enzymes (grown at 28 degrees C) via steady-state kinetics did not show significant differences between these synthetases either. The rate-determining step appears to be after the transfer of the aminoacyl group to the tRNA, e.g. a conformational change or the release of the product. Besides leucine only isoleucine is activated by the enzymes with a discrimination of approximately 1:600; however, no Ile-tRNALeu is released. Similarly these enzymes, when tested with eight ATP analogs, cannot be distinguished. For both enzymes six ATP analogs are neither substrates nor inhibitors. Two analogs are substrates with identical kinetic parameters. The mitochondrial wild-type leucyl-tRNA synthetase is different from the cytoplasmic enzyme, as particularly exhibited by aminoacylating Escherichia coli tRNALeu but not N. crassa cytoplasmic tRNALeu. The presence of traces of the analogous mitochondrial mutant enzyme could be demonstrated. Therefore, the difference between wild-type and mutant leu-5 does not rest in the catalytic properties of the cytoplasmic leucyl-tRNA synthetases. Differences in other properties of these enzymes are not excluded. In contrast the activity of the mitochondrial leucyl-tRNA synthetase of the mutant is approximately 1% of that of the wild-type enzyme.  相似文献   

6.
A mutant of Escherichia coli with a thermosensitive defect, possibly in the outer membrane (omsA mutant), was isolated from E. coli K-12 by mutagenization and selection for thermosensitivity and beta-lactam supersensitivity of growth. The mutant also showed very high sensitivity to other antibiotics, such as macarbomycin, midecamycin, rifampin, and bacitracin. The mutation was recessive to the wild type and was mapped at about 4 min on the E. coli chromosome between fhuA and metD. The mutation caused rapid release into the medium of periplasmic enzymes such as RTEM penicillinase but practically no cytoplasmic enzyme when cells grown at 30 degrees C were transferred to 37 or 42 degrees C. Electron microscopic observations showed many large double-layered vesicles attached to the surface of cells incubated at 42 degrees C. We conclude that the mutant had a mutation that caused a temperature-dependent defect in the outer membrane structure or its assembly (named an oms mutation). The omsA mutant may be useful for production of periplasmic proteins, which it releases into the culture medium on shift up of temperature.  相似文献   

7.
A comparative study of the thermal stability of wild type poplar plastocyanin and of a mutant form containing a disulfide bridge between residues 21 and 25 was performed using differential scanning calorimetry and optical spectroscopic techniques. For wild type plastocyanin the transition temperature, determined from the calorimetric profiles, is 62.7 degrees C at the scan rate of 60 degrees C/h, whereas for the mutant it is reduced to 58.0 degrees C. In both cases, the endothermic peak is followed by an exothermic one at higher temperatures. The unfolding process monitored by optical absorption at 596 nm also reveals a reduced thermal stability of the mutated plastocyanin compared to the wild type protein, with transition temperatures of 54.8 and 58.0 degrees C, respectively. For both proteins, the denaturation process was found to be irreversible and dependent on the scan rate preventing the thermodynamic analysis of the unfolding process. In parallel, small conformational changes between wild type and mutant plastocyanin emerge from fluorescence spectroscopy measurements. Here, a difference in the interaction of the two proteins between the microenvironment surrounding the fluorophores and the solvent was proposed. The destabilization observed in the disulfide containing mutant of plastocyanin suggests that the double mutation, Ile21Cys and Glu25Cys, introduces strain into the protein which offsets the stabilizing effect expected from the formation of a covalent crosslink.  相似文献   

8.
Hecky J  Müller KM 《Biochemistry》2005,44(38):12640-12654
The choice of protein for use in technical and medical applications is limited by stability issues, making understanding and engineering of stability key. Here, enzyme destabilization by truncation was combined with directed evolution to create stable variants of TEM-1 beta-lactamase. This enzyme was chosen because of its implication in prodrug activation therapy, pathogen resistance to lactam antibiotics, and reporter enzyme bioassays. Removal of five N-terminal residues generated a mutant which did not confer antibiotic resistance at 37 degrees C. Accordingly, the half-life time in vitro was only 7 s at 40 degrees C. However, three cycles comprising random mutagenesis, DNA shuffling, and metabolic selection at 37 degrees C yielded mutants providing resistance levels significantly higher than that of the wild type. These mutants demonstrated increased thermoactivity and thermostability in time-resolved kinetics at various temperatures. Chemical denaturation revealed improved thermodynamic stabilities of a three-state unfolding pathway exceeding wild-type construct stability. Elongation of one optimized deletion mutant to full length increased its stability even further. Compared to that of the wild type, the temperature optimum was shifted from 35 to 50 degrees C, and the beginning of heat inactivation increased by 20 degrees C while full activity at low temperatures was maintained. We attribute these effects mainly to two independently acting boundary interface residue exchanges (M182T and A224V). Structural perturbation by terminal truncation, evolutionary compensation at physiological temperatures, and elongation is an efficient way to analyze and improve thermostability without the need for high-temperature selection, structural information, or homologous proteins.  相似文献   

9.
Mutational alteration of the BLM5 gene of the model eukaryote, Saccharomyces cerevisiae, confers extreme hypersensitivities to lethal effects of ionizing radiation, anticancer bleomycins and structurally-related phleomycins. Additional properties conferred by the blm5-1 mutation in haploid and diploid strains were investigated for the current report. Only one copy of blm5-1 together with the normal BLM5 allele was sufficient to produce mitotic and meiotic defects in diploids, and greatly increase killing by bleomycin beyond wild type levels. Mitotic growth rates of blm5-1/blm5-1 homozygous mutant strains were slower than wild type or BLM5/blm5-1 heterozygous strains at 30 degrees C, and growth was nearly completely inhibited at 37 degrees C. Meiosis was inhibited at 30 degrees C and 37 degrees C in mutant homozygotes, and at 37 degrees C in BLM5/blm5-1 heterozygotes, while meiosis occurred at equivalent frequencies in wild type strains at both temperatures. Surprisingly, mutant strains were found to associate extremely low quantities of [S-methyl-3H]bleomycin A2, in contrast to normal strains that associated quite high amounts. However, the fractions of the total associated radioactivities that were released from normal and blm5-1 cells were equivalent. These results suggested that the extremely high killing suffered by blm5-1 mutant strains in response to bleomycin treatments results from something other than increased intracellular drug concentrations.  相似文献   

10.
A unique variant of glutathione independent formaldehyde dehydrogenase of Pseudomonas putida was obtained by random mutagenesis using the PCR-reaction. This YM042 mutant, S318G, was a cold-adapted formaldehyde dehyrogenase. The activity at 29 degrees C of the variant was 1.7-fold higher than that of the wild type. The K(m) values of the mutant at 37 degrees C were 0.40 mM for NAD(+) and 2.5 mM for formaldehyde, while those of the wild-type were 0.18 mM for NAD(+) and 2.1 mM for formaldehyde. The catalytic efficiency for formaldehyde was about 1.5-fold greater in the mutant than in the wild-type enzyme. The optimum pHs and temperatures of the mutant and the wild-type enzyme were 7.5, and 8.0 and 37 degrees C, and 47 degrees C, respectively. The thermal stability of the mutant was lower than that of the wild type.  相似文献   

11.
A single-site mutant of Escherichia coli K-12 able to grow in minimal medium in the presence of D-serine at 30 C but not at 42 C was isolated. The mutant forms a D-serine deaminase that is much more sensitive to thermal denaturation in vitro at temperatures above but not below 47 C than that of the wild type. No detectable enzyme is formed by the mutant at 42 C, however, and very little is formed at 37 C. The mutant enzyme is probably more sensitive to intracellular inactivation at high temperatures than the wild-type enzyme. The mutation lies in the dsdA region. The mutant also contains a dsdO mutation, which does not permit hyperinduction of D-serine deaminase synthesis.  相似文献   

12.
温度对假单胞rsmA突变株M-18R合成Plt和PCA的区别性影响   总被引:1,自引:0,他引:1  
次生代谢物阻遏蛋白(Repressor of secondary metabolite,Rsm)A是一种全局性调控因子,与mRNA的RBS结合,转录后水平上抑制基因翻译。运用同源重组技术,构建了假单胞茵(Pseudomonas sp.)M-18的rsmA突变菌株M-18R。在37℃、28℃恒温和短期升温(37℃、4h培养,转28℃继续培养)条件下,比较野生株M-18和突变株M-18R生物合成藤黄绿菌素(Plt)和吩嗪-1-羧酸(PCA)的量。在37℃条件下,M-18和M-18R合成这两种抗生物质的能力几乎受到完全抑制。在28℃条件下,M-18R合成P11的量约为野生型M-18的10倍,达到270μg/mL,但是合成PCA的量仅为野生型的50%。经短期升温培养,M-18的Plt合成量明显下降,PCA产量降低不显;相反,M-18R合成Plt的量达到400μg/mL,但PCA产量的变化仍不明显。推测,M-18菌株细胞内存在着某种与RsmA相关联的温度敏感因子,在RsmA缺失条件下,作为专一性激活剂促进Plt的生物合成,但是,并不参与对PCA合成的调控。  相似文献   

13.
We have used alanine-scanning site-directed mutagenesis of the dimer contact region of starch phosphorylase from Corynebacterium callunae to explore the relationship between a protein conformational change induced by phosphate binding and the up to 500-fold kinetic stabilization of the functional quarternary structure of this enzyme when phosphate is present. Purified mutants (at positions Ser-224, Arg-226, Arg-234, and Arg-242) were characterized by Fourier transform-infrared (FT-IR) spectroscopy and enzyme activity measurements at room temperature and under conditions of thermal denaturation. Difference FT-IR spectra of wild type and mutants in (2)H(2)O solvent revealed small changes in residual amide II band intensities at approximately 1,550 cm(-1), indicating that (1)H/(2)H exchange in the wild type is clearly perturbed by the mutations. Decreased (1)H/(2)H exchange in comparison to wild type suggests formation of a more compact protein structure in S224A, R234A, and R242A mutants and correlates with rates of irreversible thermal denaturation at 45 degrees C that are up to 10-fold smaller for the three mutants than the wild type. By contrast, the mutant R226A inactivates 2.5-fold faster at 45 degrees C and shows a higher (1)H/(2)H exchange than the wild type. Phosphate (20 mM) causes a greater change in FT-IR spectra of the wild type than in those of S224A and 234A mutants and leads to a 5-fold higher stabilization of the wild type than the two mutants. Therefore, structural effects of phosphate binding leading to kinetic stability of wild-type starch phosphorylase are partially complemented in the S224A and R234A mutants. Infrared spectroscopic measurements were used to compare thermal denaturations of the mutants and the wild type in the absence and presence of stabilizing oxyanion. The broad denaturation transition of unliganded wild type in the range 40-50 degrees C is reduced in the S224A and R234A mutants, and this reflects mainly a shift of the onset of denaturation to a 4-5 degrees C higher value.  相似文献   

14.
Cells with altered hypoxanthine-guanine phosphoribosyl transferase (HPRT) (IMP:pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) have been selected. Compared to wild type, mutant enzyme has a reduced affinity for the substrate phosphoribosyl pyrophosphate and is more labile to heat inactivation. Mutant cells are resistant to 6-thioguanine at 33-39 degrees C and sensitive to hypoxanthine-aminopterin-thymidine at 37-39 degrees C, but not at 33 degrees C. We hypothesize that a single structural mutation of HPRT can explain these results.  相似文献   

15.
The beta-glucosidase encoded by the bglA gene from Paenibacillus polymyxa has a half-life time of 15 min at 35 degrees C and no detectable activity at 55 degrees C. We have isolated random mutations that enhance the thermoresistance of the enzyme. Following a directed evolution strategy, we have combined some of the isolated mutations to obtain a beta-glucosidase with a half-life of 12 min at 65 degrees C, in the range of resistance of thermophilic enzymes. No significant alteration of the kinetic parameters of the enzyme was observed. One of the mutants isolated in the screening for thermoresistant beta-glucosidase had the same resistance to denaturation as the wild type. This mutation caused the accumulation of enzyme in E. coli, probably due to its lower turnover. The structural changes responsible for the properties of the mutant enzymes have been analyzed. The putative causes increasing thermoresistance are as follows: the formation of an extra salt bridge, the replacement of an Asn residue exposed to the solvent, stabilization of the hydrophobic core, and stabilization of the quaternary structure of the protein.  相似文献   

16.
A mutant form of ATP phosphoribosyltranferase (EC 2.4.2.17), hisG1708c, which results in abnormally slow growth of Salmonella typhimurium at 20 °C was purified to homogeneity and kinetic and chemical behavior were characterized. Initial velocity steady-state substrate kinetics of wild-type and mutant enzymes at 37 °C were consistent with sequential kinetics and demonstrated that standard assay concentrations of substrates were sufficient to substantially saturate both enzymes. Nearly time-independent inhibition by histidine at 37 °C could be obtained only after incubation in the presence of product and histidine. Studies at 37 °C showed that the mutant enzyme is 24 times more sensitive to histidine than the wild type in a negatively cooperative manner instead of the positively cooperative manner seen for wild type. Pure mutant enzyme exhibits two major electrophoretic species of native enzyme. Although one less cysteine is titratable in native mutant enzyme, the amino acid compositions of mutant and wild-type enzymes are similar. Histidine produces an ultraviolet difference spectrum in mutant enzyme closely resembling that produced in wild type. Binding of histidyl-tRNA to mutant enzyme is substantially inhibited by histidine. It is concluded that the hisG1708c mutation alters some conformational processes coupled to the histidine binding site while not affecting others.  相似文献   

17.
Recently, we isolated CHO cells, termed SK32 cells, that express mutant Pex5p (G432R), and showed mislocalization of catalase in the cytosol, but peroxisomal localization of 3-ketoacyl-CoA thiolase (thiolase) in the mutant cells [Ito, R. et al. (2001) Biochem. Biophys. Res. Commun. 288, 321-327]. While analyzing the mutant cells, we found a novel Pex5p isoform (Pex5pM), which was shorter by seven amino acids than Pex5pL and longer by 30 amino acids than Pex5pS. Similar levels of mRNA syntheses for the PEX5 gene were observed in both the wild type and mutant cells, but the protein levels of Pex5p isoforms were markedly reduced in the mutant cells cultured at 37 degrees C and only slightly discernible at 30 degrees C, suggesting that they could be rapidly degraded. Furthermore, we characterized the peroxisomal localization of thiolase and acyl-CoA oxidase (Aox) in SK32 cells. The proteins in the organelle fraction were protected from proteinase K-digestion in the mutant cells, indicating that they were translocated inside peroxisomes. However, the conversion of Aox from component A to components B and C was completely prevented at both 30 and 37 degrees C, and the precursor form of thiolase was partially processed to the mature one in a temperature-sensitive manner. Transformed SK32 cells stably expressing one of the wild type Pex5p isoforms were isolated, and then the maturation steps for thiolase and Aox were examined. Pex5pM and S restored the processing of the two enzymes, but Pex5pL did not. In addition, Pex5pL prevented the maturation of thiolase observed at 30 degrees C. These results indicate that (i) the novel Pex5pM is functional and (ii) a seven amino acids-insertion, which is present in the L isoform but absent in the M isoform, plays some role in the process of maturation of thiolase and Aox.  相似文献   

18.
Properties of mutationally altered RNA polymerases II of Drosophila   总被引:9,自引:0,他引:9  
We tested and compared several in vitro properties of wild type and mutant RNA polymerases II from Drosophila melanogaster, using several different mutants of a single X-linked genetic locus, RpIIC4 (Greenleaf, A. L., Weeks, J. R., Voelker, R. A., Ohnishi, S., and Dickson, B. (1980) Cell 21, 785-792); the mutants tested included the original amanitin-resistant mutant, C4, which is nonconditional, plus the temperature-sensitive mutants A9, C20, E28, and 1Fb40. Using a tritium-labeled amanitin derivative, we demonstrated that C4 polymerase has a reduced binding affinity for amanitin. The C4 polymerase was as stable to thermal denaturation as the wild type enzyme, and the two enzymes had similar specific activities, ionic strength and Mn2+ requirements, and apparent Km values for UTP and GTP when assayed in the presence of Mn2+. However, with Mg2+ as the divalent cation, C4 polymerase was less active than wild type and had 2-fold higher apparent Km values for UTP and GTP. Three of the temperature-sensitive mutants, A9, C20, and E28, were derived from the amanitin-resistant mutant C4; the polymerase II activities from these mutants displayed resistance to alpha-amanitin in vitro identical with that of the C4 enzyme. C20, E28, and 1Fb40 polymerases were markedly less stable to thermal denaturation in vitro than wild type polymerase. The results presented indicate that the mutations at the RNA polymerase locus (RpIIC4-) directly alter the structure of the enzyme, providing conclusive evidence that the locus is a structural gene for a polymerase II subunit.  相似文献   

19.
We have previously determined the crystal structure of a novel pentagonal ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) from the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. Here we have carried out biochemical studies to identify the necessities and/or advantages of this intriguing pentagonal structure. The structure indicated the presence of three neighboring residues (Glu-63, Arg-66, and Asp-69), participating in ionic interactions within unique dimer-dimer interfaces. We constructed three single mutant proteins (E63S, R66S, and D69S) and one triple mutant protein (E63S/R66S/D69S) by replacing the charged residues with serine. The wild type (WT) and all mutant proteins were purified and subjected to gel permeation chromatography at various temperatures. WT and D69S proteins were decameric at all temperatures examined between 30 and 90 degrees C. The majority of E63S and R66S were decamers at 30 degrees C but were found to gradually disassemble with the elevation in temperature. E63S/R66S/D69S was found in a dimeric form even at 30 degrees C. An interesting correlation was found between the subunit assembly and thermostability of the proteins. Circular dichroism and differential scanning calorimetry analyses indicated that the denaturation temperatures of dimeric enzymes (E63S, R66S, and E63S/R66S/D69S) were approximately 95 degrees C, whereas those of the enzymes retaining a decameric structure (WT and D69S) were approximately 110 degrees C. Disassembly into tetramer or dimer units did not alter the slopes of the Arrhenius plots, indicating that the decameric structure had no effect on catalytic performance per se. The results indicate that the decameric assembly of Tk-Rubisco contributes to enhance the thermostability of the enzyme. Taking into account the growth temperature of strain KOD1 (65-100 degrees C), the decameric structure of Tk-Rubisco can be considered essential for the stable presence of the enzyme in the host cells. This study provides an interesting example in which the thermostability of a protein can be enhanced by formation of a unique quaternary structure not found in mesophilic enzymes.  相似文献   

20.
A mutant of the thermostable NAD+-dependent homotetrameric alcohol dehydrogenase from Sulfolobus solfataricus (SsADH), which has a single substitution, Asn249Tyr, located at the coenzyme binding domain, was obtained by error prone PCR. The mutant enzyme, which was purified from Escherichia coli to homogeneous form, exhibits a specific activity that is more than 6-fold greater than that of the wild type enzyme, as measured at 65 degrees C with benzyl alcohol as the substrate. The oxidation rate of aliphatic alcohols and the reduction rate of aromatic aldehydes were also higher. The dissociation constants for NAD+ and NADH determined at 25 degrees C and pH 8.8 were 3 orders of magnitude greater compared to those of the wild type enzyme. It is thought that the higher turnover of the mutant SsADH is due to the faster dissociation of the modified enzyme-coenzyme complex. Spectroscopic studies showed no relevant changes in either secondary or tertiary structure, while analysis with fluorescent probes revealed a significant increase in surface hydrophobicity for the mutant, with respect to that of the wild type molecule. The mutant SsADH displays improved thermal stability, as indicated by the increase in Tm from 90 to 93 degrees C, which was determined by the apparent transition curves. Kinetic thermal stability studies at pH 9.0 for mutant SsADH showed a marked increase in activation enthalpy compensated by an entropy gain, which resulted in a higher activation barrier against thermal unfolding of the enzyme. Ammonia analysis showed that the Asn249Tyr substitution produced the effect of markedly reducing the extent of deamidation during thermoinactivation, thus suggesting that Asn249 plays a significant role in the mechanism of irreversible thermal denaturation of the archaeal ADH. Furthermore, the decrease in the activating effect by moderate concentrations of denaturants and studies with proteases and chelating agents point to an increase in structural rigidity and a tightening of structural zinc as additional factors responsible for the improved thermal resistance of the mutant enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号