首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
sigma 32, the product of the Escherichia coli rpoH locus, is an alternative RNA polymerase sigma factor utilized to express heat shock genes upon a sudden rise in temperature. E. coli K165 [rpoH165(Am) supC(Ts)] is temperature sensitive for growth and does not induce heat shock protein synthesis. We have isolated a locus from Rhizobium meliloti called suhR that allows E. coli K165 to grow at high temperature and induce heat shock protein synthesis. R. meliloti suhR mutants were viable and symbiotically effective. suhR was found to have no DNA or derived amino acid sequence similarity to the genes of previously sequenced sigma factors or other data base entries, although a helix-turn-helix DNA-binding protein motif is present. suhR did not restore the phenotypic defects of delta rpoH E. coli; suppression of the E. coli K165 phenotype is thus likely to involve E. coli sigma 32. Western immunoblots showed that suhR caused an approximately twofold elevation of sigma 32 levels in K165; RNA blots indicated that rpoH mRNA level and stability were not altered. Stabilization of sigma 32 protein and increased rpoH mRNA translation are thus the most probable mechanisms of suppression.  相似文献   

11.
Escherichia coli K-12 strain 285c contains a short deletion mutation in rpoD, the gene encoding the sigma 70 subunit of RNA polymerase. The sigma 70 protein encoded by this allele (rpoD285) unstable, and this instability leads to temperature-sensitive growth. Pseudorevertants of 285c that can grow at high temperature contain mutations in the rpoH gene (encoding the heat shock sigma factor sigma 32), and their mutant sigma 70 proteins have increased stability. We characterized the alterations in three of these rpoH alleles. rpoH111 was a point mutation resulting in a single amino acid substitution. rpoH107 and rpoH113, which are known to be incompatible with rpoD+, altered the restriction map of rpoH. rpoH113 was deleted for 72 base pairs of the rpoH gene yet retained some sigma 32 activity. rpoH107 had two IS1 elements that flanked an unknown DNA segment of more than 6.4 kilobases inserted in the rpoH promoter region. The insertion decreased the amount of rpoH mRNA to less than 0.5% of the wild-type level at 30 degrees C. However, the mRNA from several heat shock promoters was decreased only twofold, suggesting that the strain has a significant amount of sigma 32.  相似文献   

12.
Temperature-resistant pseudorevertants were isolated from a dnaK7(Ts) mutant of Escherichia coli K-12. Two of these pseudorevertants were shown to carry suppressor mutations, sukA and sukB, respectively. Genetic mapping by conjugation and P1-transduction revealed that these suppressor mutations were located at two distinct sites between 76 and 77 min close to the suhA and rpoH genes. Labeled cellular proteins were extracted from suppressor mutants grown at various temperatures and subjected to SDS-gel electrophoresis. Autoradiograms of the gels indicated that these suppressor mutations each resulted in increased synthesis of the heat shock protein Lon (an ATP-dependent protease, La) at both permissive and nonpermissive temperatures.  相似文献   

13.
We identified two rpoH-related genes encoding sigma32-like proteins from Sinorhizobium meliloti, a nitrogen-fixing root-nodule symbiont of alfalfa. The genes, rpoH1 and rpoH2, are functionally similar to rpoH of Escherichia coli because they partially complemented an E. coli rpoH null mutant. We obtained evidence indicating that these genes are involved in the heat shock response in S. meliloti. Following an increase in temperature, synthesis of several putative heat shock proteins (Hsps) was induced in cultures of wild-type cells: the most prominent were 66- and 60-kDa proteins, both of which are suggested to represent GroEL species. The other Hsps could divided into two groups based on differences in synthesis kinetics: synthesis of the first group peaked 5-10 min, and expression of the other group 30 min, after temperature upshift. In the rpoH1 mutant, inducible synthesis of the former group was markedly reduced, whereas that of the latter group was not affected. Synthesis of both the 66- and 60-kDa proteins was partially reduced. While no appreciable effect was observed in the rpoH2 single mutant, the rpoH2 mutation had a synergistic effect on the 60-kDa protein in the rpoH1- background. The results indicate that two distinct mechanisms are involved in the heat shock response of S. meliloti: one requires the rpoH1 function, while rpoH2 can substitute in part for the rpoH1 function. Moreover, the rpoH1 mutant and rpoH1 rpoH2 double mutant exhibited Nod+ Fix- and Nod- phenotypes, respectively, on alfalfa.  相似文献   

14.
The heat shock response of Escherichia coli is under the positive control of the sigma 32 protein (the product of the rpoH gene). We found that overproduction of the sigma 32 protein led to concomitant overproduction of the heat shock proteins, suggesting that the intracellular sigma 32 levels limit heat shock gene expression. In support of this idea, the intracellular half-life of the sigma 32 protein synthesized from a multicopy plasmid was found to be extremely short, e.g., less than 1 min at 37 and 42 degrees C. The half-life increased progressively with a decrease in temperature, reaching 15 min at 22 degrees C. Finally, conditions known previously to increase the rate of synthesis of the heat shock proteins, i.e., a mutation in the dnaK gene or expression of phage lambda early proteins, were shown to simultaneously result in a three- to fivefold increase in the half-life of sigma 32.  相似文献   

15.
16.
B Bukau  G C Walker 《The EMBO journal》1990,9(12):4027-4036
An Escherichia coli mutant lacking HSP70 function, delta dnaK52, is unable to grow at both high and low temperatures and, at intermediate temperature (30 degrees C), displays defects in major cellular processes such as cell division, chromosome segregation and regulation of heat shock gene expression that lead to poor growth and genetic instability of the cells. In an effort to understand the roles of molecular chaperones such as DnaK in cellular metabolism, we analyzed secondary mutations (sid) that suppress the growth defects of delta dnaK52 mutants at 30 degrees C and also permit growth at low temperature. Of the five suppressors we analyzed, four were of the sidB class and mapped within rpoH, which encodes the heat shock specific sigma subunit (sigma 32) of RNA polymerase. The sidB mutations affected four different regions of the sigma 32 protein and, in one case, resulted in a several fold reduction in the cellular concentration of sigma 32. Presence of any of the sidB mutations in delta dnaK52 mutants as well as in dnaK+ cells caused down-regulation of heat shock gene expression at 30 degrees C and decreased induction of the heat shock response after shift to 43.5 degrees C. These findings suggest that the physiologically most significant function of DnaK in the metabolism of unstressed cells is its function in heat shock gene regulation.  相似文献   

17.
Lysis of Escherichia coli by the cloned E protein of bacteriophage phi X174 was more rapid than expected when bacteria were shifted from 30 to 42 degrees C at the time of E induction. Since such treatment also induces the heat shock response, we investigated the effect of heat shock proteins on lysis. An rpoH mutant was more sensitive to lysis by E, but a secondary suppressor mutation restored lysis resistance to parental levels, which suggests that the sigma 32 subunit itself did not directly increase lysis resistance. At 30 degrees C, mutants in five heat shock genes (dnaK, dnaJ, groEL, groES, and grpE) were more sensitive to lysis than were their wild-type parents. The magnitude of lysis sensitivity varied with mutation and strain background, with dnaK, dnaJ, and groES mutants consistently exhibiting the greatest sensitivities. Extended protection against lysis occurred when overproduction of heat shock proteins was induced artificially in cells that contained a plasmid with the rpoH+ gene under control of the tac promoter. This protective effect was completely abolished by mutations in dnaK, dnaJ, or groES but not by grpE or groEL mutations. Altered membrane behavior probably explains the contradiction whereby an actual temperature shift sensitized cells to lysis, but production of heat shock proteins exhibited protective effects. The results demonstrate that E-induced lysis can be divided into two distinct operations which may now be studied separately. They also emphasize a role for heat shock proteins under non-heat-shock conditions and suggest cautious interpretation of lysis phenomena in systems where E protein production is under control of a temperature-sensitive repressor.  相似文献   

18.
19.
R Yano  T Yura 《Journal of bacteriology》1989,171(3):1712-1717
Several suppressors (suhD) that can specifically suppress the temperature-sensitive opal rpoH11 mutation of Escherichia coli K-12 have been isolated and characterized. Unlike the parental rpoH11 mutant deficient in the heat shock response, the temperature-resistant pseudorevertants carrying suhD were capable of synthesizing sigma 32 and exhibiting partial induction of heat shock proteins. These strains were also cold sensitive and unable to grow at 25 degrees C. Genetic mapping and complementation studies permitted us to localize suhD near rpsO (69 min), the structural gene for ribosomal protein S15. Ribosomes and polyribosomes prepared from suhD cells contained a reduced level (ca. 10%) of S15 relative to that of the wild type. Cloning and sequencing of suhD revealed that an IS10-like element had been inserted at the attenuator-terminator region immediately downstream of the rpsO coding region. The rpsO mRNA level in the suhD strain was also reduced to about 10% that of wild type. Apparently, ribosomes lacking S15 can actively participate in protein synthesis and suppress the rpoH11 opal (UGA) mutation at high temperature but cannot sustain cell growth at low temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号